LICP OpenIR  > 环境材料与生态化学研究发展中心
利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法; 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法; 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法; 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法; 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法; 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法; 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法; 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法; 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法; 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法; 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法; 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法
王文波; 王爱勤; 田光燕; 康玉茹; 汪琴; 宗莉; 牟斌
2018-04-10 ; 2018-04-10 ; 2018-04-10 ; 2018-04-10 ; 2018-04-10 ; 2018-04-10 ; 2018-04-10 ; 2018-04-10 ; 2018-04-10 ; 2018-04-10 ; 2018-04-10 ; 2018-04-10
Rights Holder中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 ; 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心
Date Available2017-01-11 ; 2017-01-11 ; 2017-01-11 ; 2017-01-11 ; 2017-01-11 ; 2017-01-11 ; 2017-01-11 ; 2017-01-11 ; 2017-01-11 ; 2017-01-11 ; 2017-01-11 ; 2017-01-11
Country中国 ; 中国 ; 中国 ; 中国 ; 中国 ; 中国 ; 中国 ; 中国 ; 中国 ; 中国 ; 中国 ; 中国
Abstract

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

;

本发明公开了一种利用低品位凹凸棒石黏土制备1 .1nm托贝莫来石的方法,它是将低品位凹凸棒石黏土矿粉碎得到150-300目粉体,然后分散到硅酸盐水溶液中,微波活化处理5-10分钟,形成稳定的悬浮液A;将钙盐分散在水中,形成均一分散液B;在快速搅拌下,将分散液B缓慢加入到悬浮液A中,充分混合均匀,得到前驱体悬浮液;将前驱体悬浮液转入水热反应釜中进行水热反应,然后降温至室温;固体产物经分离、洗涤、干燥、粉碎处理,得到1 .1nm托贝莫来石。本发明通过水热过程中凹凸棒石黏土各组分与硅盐和钙盐产生化学反应,使晶型发生转变和重组,从而形成稳定性好、粒度均匀的1 .1nm托贝莫来石,产品均一性好,性能稳定,用于重金属、染料、抗生素等物质的吸附剂。

Subject Area材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 矿物学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学 ; 材料学 ; 材料学 ; 矿物学 ; 矿物学
Department环境材料与生态化学研究发展中心 ; 环境材料与生态化学研究发展中心 ; 环境材料与生态化学研究发展中心 ; 环境材料与生态化学研究发展中心 ; 环境材料与生态化学研究发展中心 ; 环境材料与生态化学研究发展中心 ; 环境材料与生态化学研究发展中心 ; 环境材料与生态化学研究发展中心 ; 环境材料与生态化学研究发展中心 ; 环境材料与生态化学研究发展中心 ; 环境材料与生态化学研究发展中心 ; 环境材料与生态化学研究发展中心
The second department甘肃省黏土矿物应用重点实验室 ; 甘肃省黏土矿物应用重点实验室 ; 甘肃省黏土矿物应用重点实验室 ; 甘肃省黏土矿物应用重点实验室 ; 甘肃省黏土矿物应用重点实验室 ; 甘肃省黏土矿物应用重点实验室 ; 甘肃省黏土矿物应用重点实验室 ; 甘肃省黏土矿物应用重点实验室 ; 甘肃省黏土矿物应用重点实验室 ; 甘肃省黏土矿物应用重点实验室 ; 甘肃省黏土矿物应用重点实验室 ; 甘肃省黏土矿物应用重点实验室
Application Date2016-08-31 ; 2016-08-31 ; 2016-08-31 ; 2016-08-31 ; 2016-08-31 ; 2016-08-31 ; 2016-08-31 ; 2016-08-31 ; 2016-08-31 ; 2016-08-31 ; 2016-08-31 ; 2016-08-31
Patent Number201610769079.3 ; 201610769079.3 ; 201610769079.3 ; 201610769079.3 ; 201610769079.3 ; 201610769079.3 ; 201610769079.3 ; 201610769079.3 ; 201610769079.3 ; 201610769079.3 ; 201610769079.3 ; 201610769079.3
Language中文 ; 中文 ; 中文 ; 中文 ; 中文 ; 中文 ; 中文 ; 中文 ; 中文 ; 中文 ; 中文 ; 中文
Status已授权 ; 已授权 ; 已授权 ; 已授权 ; 已授权 ; 已授权 ; 已授权 ; 已授权 ; 已授权 ; 已授权 ; 已授权 ; 已授权
Application Number106315605A ; 106315605A ; 106315605A ; 106315605A ; 106315605A ; 106315605A ; 106315605A ; 106315605A ; 106315605A ; 106315605A ; 106315605A ; 106315605A
Patent Agent韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌 ; 韩晓斌
Document Type专利
Identifierhttp://ir.licp.cn/handle/362003/22964
Collection环境材料与生态化学研究发展中心
甘肃省黏土矿物应用研究重点实验室
Affiliation中国科学院兰州化学物理研究所
Recommended Citation
GB/T 7714
王文波,王爱勤,田光燕,等. 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法, 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法, 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法, 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法, 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法, 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法, 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法, 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法, 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法, 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法, 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法, 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法. 201610769079.3, 201610769079.3, 201610769079.3, 201610769079.3, 201610769079.3, 201610769079.3, 201610769079.3, 201610769079.3, 201610769079.3, 201610769079.3, 201610769079.3, 201610769079.3[P]. 2018-04-10, 2018-04-10, 2018-04-10, 2018-04-10, 2018-04-10, 2018-04-10, 2018-04-10, 2018-04-10, 2018-04-10, 2018-04-10, 2018-04-10, 2018-04-10.
Files in This Item:
File Name/Size DocType Version Access License
CN201610769079-利用低品位(393KB)专利 开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[王文波]'s Articles
[王爱勤]'s Articles
[田光燕]'s Articles
Baidu academic
Similar articles in Baidu academic
[王文波]'s Articles
[王爱勤]'s Articles
[田光燕]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[王文波]'s Articles
[王爱勤]'s Articles
[田光燕]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: CN201610769079-利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.