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Abstract In this chapter, the preparation and tribological properties of MoS2-based 
nanocomposites were reviewed, including nanocomposites of MoS2 with different 
morphologies, MoS2/inorganic compound nanocomposites, MoS2/polymer  nano-
composites, and Ni–P–(nano-MoS2) composite coatings. The nanocomposites of 
MoS2 can be prepared by mechanical-mixing two kinds of nano-MoS2 with differ-
ent morphologies or chemically synthesizing from sodium molybdate and differ-
ent sulfides. The nanocomposites of MoS2 reveal better tribological properties than 
their original materials. Moreover, the chemical method presents advantages over 
the mechanical one in the preparation of the MoS2 nanocomposites with different 
morphologies for lubrication applications. Using an appropriate chemical method 
may produce MoS2/inorganic compound nanocomposites such as MoS2/TiO2 nano-
composite. Two kinds of nanoparticles (nano-MoS2 and nano-TiO2) reveal a syner-
gistic effect on the tribological properties of the MoS2/TiO2 nanocomposite. MoS2/
polymer nanocomposites may be prepared by adding nanosized MoS2 into polymers 
or using the chemical intercalation technology. The chemical intercalation technol-
ogy may lead to disperse MoS2 into polymer matrix better than the mechanical-
filled way. However, the intercalation compound of MoS2/polymer can not present 
a satisfactory lubrication performance, because the intercalation process destroys the 
2H structure of MoS2 with better lubricity. The Ni–P coatings may be co-deposited 
with nanosized MoS2 on medium carbon steel substrate by electroless plating. The 
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obtained Ni–P–nano-MoS2 composite coating shows an excellent lubricating perfor-
mance. The present review concluded the synthesis and tribological applications of 
MoS2-based nanocomposite well.

1  Introduction

Nanocomposites have wide applications in modern materials science and nano-
technology. Recently, the significance of nanocomposites in tribology was also 
paid so much attention. The nanocomposites may be prepared by mechanical 
mixing, chemical synthesis and coating technology. The components in a nano-
composite may offset their defects and enhance their merits mutually. Thus, the 
nanocomposites usually have better performances in friction reduction and wear 
resistance than their original materials. Some solid lubricants, such as molybde-
num disulfide (MoS2), graphite, and carbon nanotube, are often used as materi-
als to synthesize nanocomposites. Herein, several selected features concerning the 
MoS2-based nanocomposites were reviewed based on our recent researches and 
results reported by other researchers. In the second section, the structure and prop-
erties of bulk 2H-MoS2 were reviewed. Section 3 describes the development in 
nanosized MoS2 (nano-MoS2). Section 4 is focused on the synthesis and tribologi-
cal properties of MoS2-based nanocomposites, including MoS2 nanocomposites 
with different morphologies, MoS2/inorganic compound nanocomposites, MoS2/
polymer nanocomposites, and Ni–P–(nano-MoS2) composite coatings.

2  Molybdenum Disulfide

Molybdenum disulfide (MoS2) is the main component of molybdenite that is the 
principal ore of molybdenum. MoS2 has three crystal states, i.e. 1T, 2H, and 3R [1]. 
The 2H layered crystal structure is usually considered as the most important fac-
tor for lubrication of MoS2. The commercial lubricant of bulk 2H-MoS2 presents 
a platelet-like shape (Fig. 1) [2]. The bulk 2H-MoS2 is composed of layered struc-
tures that contains strong S–Mo–S covalent bonds in inside layers and weak Van der 
Waals gaps between molecular layers. The 2H layered structure results in a strong 
(002) peak in the powder X-ray diffraction pattern (XRD) of MoS2 (Fig. 2) [3].

The Van der Waals gaps between MoS2 layers are easy to slide under the fric-
tion shearing (Fig. 3). In addition, S atoms on MoS2 have an intensive adsorption 
effect on the metal surface. The two characteristics may provide persistent lubri-
cation for metal friction pairs, especially in extreme environments such as high-
temperature and high-vacuum [4, 5]. Thus, MoS2 has become an important solid 
lubricant in aviation and aerospace. Moreover, MoS2 is also a known-well additive 
in lubricating oils, polymers, and coatings [1, 6, 7].
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Fig. 1  TEM image of 2H-MoS2 (adapted from Ref. [2])

733 nm

Van der Waals gaps

Shearing

Sliding

(a) (b)

Fig. 3  Van der Waals gaps between MoS2 layers (a) and schematic diagram of their shearing-
sliding (b)

Fig. 2  X-ray diffraction pattern of 2H-MoS2 powder (adapted from Ref. [3])
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3  Nanosized Molybdenum Disulfide

Nano-MoS2 usually presents better lubrication performance than bulk MoS2. 
Thus, considerable attention has been given to nano-MoS2. There has been a lot 
of researches on the synthesis [8–13] and tribology of nano-MoS2 [14–26]. The 
chemical routes to synthesize nano-MoS2 include gas phase growth [8], hydrother-
mal or solvothermal synthesis [10], decomposition of precursors [11, 12], etc. The 
synthesized nano-MoS2 involves tube-like [8, 9], platelet-like [11], sphere-like 
[12] and fullerene-like [8] shapes. The morphologies of nano-MoS2 can be catego-
rized into two: layer-opened and layer-closed.

The layer-opened MoS2, such as platelet-like nano-MoS2 (MoS2 nano-platelet), 
contains basal surfaces and rim-edge surfaces [27]. The atoms on the rim-edge sur-
face have high chemical activity. The chemically active MoS2 nano-platelet is easy 
oxidized during friction process. The oxidation resultants, such as MoO3 and sulfates, 
may function as a lubrication film to reduce friction [28, 29]. However, an excessive 
oxidation can also weaken the lubrication of nano-platelet. Because MoS2 nano-
platelet has a similar 2H layered structure to that of the bulk MoS2, its lubrication 
may also be explained using the easy sliding between S–Mo–S molecular layers [23].

Forming layer-closed structures, such as inorganic fullerene-like, tube-like and 
hollow sphere-like, may eliminate the active rim-edge surface and increase the 
chemical stability of nano-MoS2 [2, 15, 16, 23]. The oxidation film is not the main 
reason for the excellent tribological properties of the layer-closed nano-MoS2. The 
chemical stability enables the layer-closed nano-MoS2 to function as lubrication 
well during friction process. Moreover, the lubrication mechanism of the layer-
closed nano-MoS2 was also attributed to elastic deformation and exfoliation of 
MoS2 and the delivery of the exfoliated nano-sheets to the contact area [14, 15, 24, 
30, 31], which have been observed through advanced characterization technologies 
[25, 26]. Due to the particular lubrication mechanism, the layer-closed nano-MoS2 
can usually reveal very excellent tribological properties.

Recently, the morphological effect on the tribological properties of MoS2 was 
studied in liquid paraffin (LP) and rapeseed oil. The layer-closed MoS2 nano-
spheres had a better lubrication performance than the layer-opened MoS2 nano-
platelets at a content of 1.5 wt % in liquid paraffin, but a worse one at 0.5 wt % [23]. 
However, the layer-closed nano-sphere revealed considerable advantages over the 
layer-opened one in rapeseed oil at any of content used (unpublished results).

4  Molybdenum Disulfide Nanocomposites

4.1  MoS2 Nanocomposites with Different Morphologies

Three kinds of MoS2, namely, micro-platelet (325 meshes), hollow nano-sphere, 
and nano-platelet, were used to prepare MoS2 nanocomposites with differ-
ent morphologies by mechanical mixing [32]. The diameters of MoS2 hollow 
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nano-spheres vary from 80 to 200 nm with an about 15 nm shell. The thickness 
of nano-platelet is about 7 nm and the length about 40 nm. Some composites were 
obtained by proportionally mixing any two of the three kinds of MoS2 in liquid 
paraffin.

Figure 4 provides results of four-ball tribological tests for the 1.5 wt % MoS2 
nanocomposites in liquid paraffin [32]. The tests were conducted at 1450 rpm and 
300 N for 30 min. Figure 4a shows the average friction coefficients of different 
nanocomposites. The pure MoS2 nano-spheres presented better anti-friction per-
formance in liquid paraffin than the two pure platelets-like MoS2. However, the 
MoS2 nanocomposites had lower friction coefficients than that of the pure MoS2 
nano-spheres in liquid paraffin. The lowest friction coefficient occurred in the LP 
sample with the nano-sphere/micro-platelet composite (20 wt % nano-spheres and 
80 wt % micro-platelets). Thus, forming nanocomposites may improve the anti-
friction performance of MoS2.

Figure 4b provides the anti-wear results (average wear scar diameter) of 
four-ball tests. As shown in the figure, The LP sample with MoS2 nano-spheres 
presented better anti-wear properties than that with MoS2 micro-platelets or nano-
platelets. Some of LP samples with the nanocomposites presented better anti-wear 
performances than that with any of the three pure MoS2. The nano-sphere/nano-
platelet nanocomposite (60 wt % nano-spheres and 40 wt % micro-platelets) pre-
sented the best anti-wear performance.

These mentioned above indicate that the morphology of MoS2 has an influence 
on the tribological properties of MoS2 nanocomposites. The nanocomposites of 
MoS2 with different morphologies may improve the wear resistance and friction 
reduction of LP more than any of the three morphologies of MoS2 singly did. The 
different tribological properties of the three kinds of MoS2 were attributed to their 
different lubrication mechanisms. The lubrication mechanism of bulk MoS2 is 
associated with the sliding between molecular layers induced by the friction shear-
ing. With a similar layered structure to that of bulk 2H-MoS2, MoS2 nano-platelets 
may also present the shearing and sliding lubrication mechanism (Fig. 5a) [23]. 
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Fig. 4  Tribological properties of MoS2 nanocomposites prepared by mechanical mixing (adapted 
from Ref. [32])
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The excellent tribological properties of spherical nano-MoS2 may be explained 
by its chemical inertness, rolling friction, deformation, and exfoliation-delivery of 
MoS2 sheets to the contact area (Fig. 5b).

According the results of Stribeck curves [23], the rotation speed used 
(1450 rpm) fell in the end of the mixed lubrication. Thus, the oil film thickness 
between the friction pairs should be slightly larger than the surface roughness of 
friction pairs (0.032 μm). The MoS2 nano-platelets with the smallest sizes eas-
ily penetrated into the friction contact region to function as lubrication. However, 
it was easy for the active nano-platelets to be excessively oxidized into MoO3 
(Fig. 5a). Thus, the nano-platelets didn’t present better lubrication properties than 
the nano-spheres.

The better tribological properties of the nanocomposites resulted from the 
cooperation between two different lubrication mechanisms [32]. The size of the 
bulk MoS2 micro-platelets exceeded the thickness of the oil film between the fric-
tion pairs. The adsorbed micro-platelets mainly functioned as a separation body 
between the friction pairs. Thus, the thickness of the oil film was magnified. The 
nano-MoS2, i.e. nano-sphere or nano-platelet, was easier to penetrate into the con-
tact region (Fig. 6a). When the micro-platelets adsorbed were worn by the friction 
shearing, the size of micro-platelet was close to the thickness of oil film. Then it 
occurred that the cooperation between the shearing-sliding of 2H structure and the 
rolling-deformation-exfoliation of nano-spheres (Fig. 6b). The similar cooperation 
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Fig. 5  Schematic of lubrication-wear mechanism of a MoS2 nano-platelet and b MoS2 nano-
sphere (adapted from Ref. [23])
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was observed between nano-platelet and micro platelet or nano-sphere and nano-
platelet (Figs. 6c–f).

MoS3 may be synthesized using the reaction of sulfides and sodium molydate. 
Nano-MoS2 can be obtained after heating MoS3 in H2 or N2. The morphology of 
nano-MoS2 is affected by the sulfides used [11, 33]. CH3CSNH2 (TAA) may pro-
duce spherical nano-MoS2 while Na2S platelet-like one. It was possible to prepare 
MoS2 nanocomposite with different morphologies by adjusting the proportion of 
the two sulfides [34]. However, Na2S can disturb the forming processes of nano-
spheres especially at low dosages of TAA (Fig. 7a). The nano-sphere/nano-platelet 
composite can be obtained only at high TAA dosages (Fig. 7a). The Schematic of 
forming MoS2 nanocomposite was shown in Fig. 8.

Micro-platelet Nano-ball Exfoliated nano-sphere

Deformed nanosphere Rotated nano-sphere Nano-platelet
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Fig. 6  Schematic of the synergistic lubrication between two kinds of MoS2 particles: a initial 
stage and b stable stage lubricated by nano-spheres and micro-platelet, c initial stage and d stable 
stage lubricated by nano-platelets and micro-platelet, e initial stage and f stable stage slices lubri-
cated by nano-spheres and nano-platelets (adapted from Ref. [32])
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Fig. 7  TEM images of MoS2 nanocomposite synthesized at a molar ratio (Na2S to CH3CSNH2) 
of: a 1:2 and b 1:4 (adapted from Ref. [34])
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Figure 9 shows the four-ball tribological properties of the MoS2 nanocom-
posite at a rotating speed of 1450 rpm and a constant load of 300 N in liquid 
paraffin [34]. Figure 9a is the effect of the molar ratio of Na2S to TAA on the 
average friction coefficient. As shown in the figure, the LP sample presented 
the lowest friction coefficient (0.051) at the proportion of 1:4 (Na2S to TAA). 
Figure 9b confirms that the variation of AWSD was approximately correlated 
to the change in friction coefficients. The steel balls lubricated by liquid paraf-
fin with the 1:4 nano-sphere/nano-platelet composite also presented the lowest 
AWSD (0.49 mm). Compared with the nanocomposites prepared by the mechani-
cally mixing method, the chemically synthesized MoS2 nanocomposite presented 
better tribological properties. The chemical method could mix nano-spheres and 
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Fig. 8  Schematic of forming nano-MoS2: a nano-spheres, b nano-platelets, and c MoS2 nano-
composite with different morphologies (adapted from Ref. [34])
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nano-platelets better than the mechanical one. Thus, the MoS2 nanocomposite by 
chemical method showed better tribological properties. However, the difference 
between the two mixing method is not very obvious. This is mainly because that 
Na2S disturbed the forming of nano-sphere.

4.2  MoS2/Inorganic Compound Nanocomposites

A MoS3/TiO2 composite was synthesized by quickly depositing MoS3 on TiO2 
under a strong acidic solution [35]. Calcining the MoS3/TiO2 composite at 450 °C 
in H2 led to a MoS2/TiO2 nanocomposite. The MoS2/TiO2 nanocomposite of 6:5 
(wt:wt) was characterized in the literauture. The XRD pattern in Fig. 10a is con-
sistent with that in JCPDS89-4921 belonging to the anatase TiO2. All diffraction 
peaks of anatase TiO2 were still present in the XRD pattern of the MoS2/TiO2 
nanocomposite (Fig. 10b), indicating that the anatase nano-TiO2 was not destroyed 
during the synthesis process. The diffraction peaks of pure nano-MoS2, reported 
in Ref. [20], were found in the XRD pattern of the nanocomposite. As shown in 
Fig. 11a, b, nano-MoS2 particles were distributed among TiO2 particles, composed 
of typical layered structures with an average length of about 15 nm (10–20 nm) 
and an average thickness of about 5 nm. The nano-MoS2 particles in the nano-
composite have larger layer distances (~0.66 nm) as compared with pure nano-
MoS2. The findings confirm that the MoS2/TiO2 nanocomposite was successfully 
prepared and provide a new method to synthesize MoS2-based nanocomposites.

The tribological properties of MoS2/TiO2 nanocomposite were investigated in 
liquid paraffin on a four-ball tribometer at 0.556 m/s under 300 N [36]. The MoS2/
TiO2 nanocomposite was found to be a promising lubricant additive with a better 
performance than either nano-MoS2 or nano-TiO2 alone. Figure 12a provides the 
variation in average friction coefficient with the mass ratio of MoS2 to TiO2 in the 
nanocomposite. The pure nano-TiO2 shows the highest friction coefficient and is 
not an appropriate anti-friction additive in LP. The lowest friction coefficient was 
observed in the nanocomposite of 2:1 (MoS2:TiO2). Figure 12b shows the varia-
tion in AWSD with the mass ratio of MoS2 to TiO2 in the nanocomposite. The best 
anti-wear performance was found in the nanocomposite of 4:1. The nanocompos-
ite of 2:1 led to the lowest friction coefficient but an AWSD close to that of pure 
nano-MoS2. These mentioned above indicate that forming MoS2/TiO2 nanocom-
posite improved the tribological properties of MoS2.

Abrasive wear was a main wear factor of steel balls lubricated by LP with the 
MoS2/TiO2 nanocomposite. The nanocomposite, containing higher chemical activ-
ity and smaller sizes, could penetrate through the oil film to the contact region. 
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However, the nanoparticles easily agglomerated during the lubrication, leading to 
inhomogeneous lubrication and asymmetrical furrows (Fig. 13) [23]. Moreover, 
nano-MoS2 with the higher chemical activity was more easily reacted with friction 
pair materials as compared to nano-TiO2. Thus, the chemical corrosion was also a 
wear factor of steel balls.

A synergistic effect between nano-TiO2 and graphite was ascribed to the effec-
tive transferring films on friction surfaces and the reinforcing effect of nanopar-
ticles [37]. A transferring film was also found on the steel balls lubricated by the 

Fig. 11  HRTEM micrographs of the prepared MoS2/TiO2 nanocomposite: a typical inner region 
and b magnified image of (a) (adapted from Ref. [35])

Fig. 10  XRD patterns of: a anatase nano-TiO2 and b MoS2/TiO2 nanocomposite (adapted from 
Ref. [35])
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MoS2/TiO2 nanocomposite [36]. The elements Mo and Ti are found in the X-ray 
photoelectron spectrum (XPS) of the wear scar lubricated by the MoS2/TiO2 nano-
composite (Fig. 14) [36]. This implies that MoS2 and TiO2 were transferred to 
the surface of friction pairs from the nanocomposite during friction process. The 
transfer produced a lubrication film on the steel balls, composed of MoO3, TiO2, 
Fe2O3 (or Fe3O4), Fe2(SO4)3 (or FeSO4), FeS, and carbon-containing compounds 
after tribochemical reactions.

The excellent lubrication of MoS2/TiO2 nanocomposite can also be explained 
using the effect of nano-TiO2 on the size and layer distance of nano-MoS2. Nano-
MoS2 in MoS2/TiO2 nanocomposite had smaller thicknesses and larger layer dis-
tances as compared to the pure nano-MoS2. The Large layer distances weakened 
the Van der Waals force between adjacent MoS2 molecular layers. Thus, the shear-
ing force needed between these layers decreased. Moreover, the lubrication of the 
MoS2/TiO2 nanocomposite could also be attributed to the micro-cooperation of 
various nanoparticles with different shapes and lubrication mechanisms [32, 34], 
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i.e. the micro-cooperation of MoS2 nano-platelets and TiO2 solid nanoparticles 
during the friction process.

4.3  MoS2/Polymer Nanocomposites

Mechanically mixing nano-MoS2 and polymers is the simplest method to prepare 
MoS2/polymer nanocomposites for tribological applications. The organic matrix 
materials mainly included polyoxymethylene (POM) [16, 38–42] and high-den-
sity polyethylene (HDPE) [2]. The addition of nano-MoS2 into polymers had to be 
done by the heating treatment. It was found that MoS2 nano-platelet could degrade 
POM into poisonous formaldehyde in the thermal process (Fig. 15) [16]. Thus, 
MoS2 nano-platelet could not be added into POM. Two composites, i.e. MoS2 
micro-platelet/POM and nano-sphere/POM (Fig. 16) [39], were obtained by the 
mechanical mixing. The nano-sphere/POM revealed better performances in fric-
tion reduction and wear resistance as compared to the micro-platelet/POM [40]. 
Chemical intercalation was an effective chemical method to obtain the MoS2/
POM nanocomposite [3, 42]. The chemical intercalation could disperse MoS2 bet-
ter than the mechanical mixing does (Fig. 17) [3]. However, the chmical interca-
lation destroyed the crystal structure of 2H MoS2 that is the basis of lubrication. 
Thus, the intercalation composite did not reveal good lubrication performance 
(Fig. 18) [40].

HDPE polymer has a more stable structure than POM and the stability of 
HDPE cannot be affected by nano-platelets at high temperatures [2]. Thus, two 
nano-MoS2/HDPE composites, i.e. nano-platelet/HDPE and nano-sphere/HDPE, 
were prepared by the mechanical mixing (Fig. 19). A fair and interesting com-
parison was achieved between nano-platelet/HDPE and nano-sphere/HDPE. The 
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literature studied the tribological properties at various MoS2 contents in HDPE 
from 0.5 to 2.0 wt % under dry friction and oil lubrication, respectively. The 
results show that the two composites of MoS2 micro-platelet/HDPE and nano-
sphere/HDPE exhibited a similar performance in friction reduction under dry fric-
tion. However, the composite with 1.0 wt % MoS2 nano-platelet showed lower 
friction coefficients than both micro-platelets/HDPE and nano-spheres/HDPE. The 
lowest friction coefficient occurred in the composite with 2.0 wt % MoS2 micro-
platelets or nano-spheres (Fig. 20). Under oil lubrication, the nano-sphere/HDPE 
composite showed the best tribological properties, especially the wear resistance. 
However, the nano-platelet/HDPE showed no expected tribological properties.

Fig. 15  TGA curve of the mixture of POM powder and MoS2 nano-platelet (adapted from Ref. 
[16])
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The melting was the main wear mechanism of MoS2/HDPE composites under 
dry friction, whereas the abrasive wear became the main wear mechanisms under 
oil lubrication. The tribological properties of MoS2/HDPE composites were influ-
enced by their crystallinity and thermo-mechanical behaviors. The addition of 
nano-sphere into HDPE improved the mechanical behaviors of HDPE, thus lead-
ing to better tribological properties. The excellent anti-wear properties of nano-
sphere/HDPE composite were attributed to the deformation and exfoliation of the 
nano-spheres during the friction process (Fig. 21).

4.4  Ni–P–(Nano-MoS2) Composite Coatings

Ni–P composite coatings with organic or inorganic particles present wide applications 
in corrosion protection, wear resistance, and friction reduction. Solid lubricants, such 
as PTFE [43, 44], carbon nanotube [45–47], WS2 [48], and MoS2 [49–52], are appro-
priate additives to modify the Ni–P coatings.
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Fig. 20  Tribological properties of MoS2/HDPE nanocomposites under dry friction: a friction 
coefficient and b wear mass (adapted from Ref. [2])

Fig. 21  Schematic diagram of the anti-wear process of MoS2 nano-sphere (adapted from Ref. [2])
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Fig. 22  SEM images of Ni–P electroless coating (a) and Ni–P–(nano-MoS2) electroless coating 
(b) (adapted from Ref. [51])

Fig. 23  Friction coefficients of Ni–P and Ni–P–(nano-MoS2) electroless coatings (adapted from 
Ref. [51])

Fig. 24  SEM images of wear surfaces of: Ni–P (a) and Ni–P–(nano-MoS2) (b) coatings 
(adapted from Ref. [51])
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Ni–P coatings may be co-deposited with MoS2 nanoparticles on medium 
carbon steel substrate by electroless plating [50–52]. Figure 22 shows the SEM 
images of electroless Ni–P and Ni–P–(nano-MoS2) composite coatings reported 
in Ref [51]. The corrosion resistance of the Ni–P–(nano-MoS2) composite coating 
was slightly lower than that of the Ni–P coating without MoS2. As shown in the 
figure, the cell volume became smaller in the Ni–P–(nano-MoS2) composite coat-
ing as compared to that in the Ni–P coating. It was also found that the nano-MoS2 
particles were around the cell boundary. The Ni–P–(nano-MoS2) coating showed 
the super low friction coefficients during the whole rubbing process (Fig. 23). 
This was attributed to the super lubricity of spherical nano-MoS2. Moreover, the 
wear of the Ni–P–(nano-MoS2) coating was also reduced by the nano-MoS2 added 
(Fig. 24).

5  Conclusions

(1) MoS2-based nanocomposites may be prepared by mechanical mixing, chemi-
cal method and electroless coating technology. They usually have better tribo-
logical properties than their original materials and play an important role in 
the lubricating composites.

(2) The chemical method generally reveals advantages over the mechanical one 
in the preparation of MoS2 nanocomposites with different morphologies for 
lubrication applications. However, the chemical intercalation can not improve 
the tribological properties of MoS2 nanocomposites, because the intercalation 
reaction destroys the 2H structure of MoS2 with better lubrication.

(3) MoS2/TiO2 nanocomposite may be prepared by depositing nano-MoS2 on 
nano-TiO2. Nano-MoS2 and nano-TiO2 present a positive synergetic effect 
on the lubrication of the nanocomposite. The sizes of MoS2 in the nanocom-
posites are smaller and its layer distances are larger than those of pure nano-
MoS2. Large layer distances weaken the Van der Waals force and small sizes 
enable MoS2 to enter the contact region more easily, leading to better anti-
friction performance.

(4) Mechanically mixing nano-MoS2 and polymers, such as POM and HDPE, 
may produce nano-MoS2/polymer nanocomposites. MoS2 nano-sphere in 
the polymers shows a good lubrication over MoS2 nano-platelet. The excel-
lent anti-wear properties of nano-spheres are attributed to the deformation and 
exfoliation of the nano-spheres during the friction process.

(5) Ni–P coatings may be co-deposited with nano-MoS2 particles on medium car-
bon steel substrate by electroless plating. The co-deposited nano-MoS2 sig-
nificantly improves the friction reduction of Ni–P coating.
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