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Abstract: The combustion temperature of a highly exothermic reaction can be above the melting point of the end products, 
which results in the formation of melt-casting products. Combustion synthesis melt casting technique possesses remarkable 
advantages for the low-cost production of structural and function materials with unique properties and characteristics. In 
this chapter, some combustion synthesis melt-casting reaction systems developed in recent years, such as refractory 
compounds, intermetallics, as well as advanced ceramics, are introduced, and the solidification mechanisms are discussed. 

INTRODUCTION 

The melt-casting process is rather common to fabricate near-net shape materials for metals, alloys, or 
composites. However, most of the ceramics have not been fabricated using melt-casting. The main obstacles for 
the application of melt-casting on ceramics lie in three aspects: First, the temperature required for melting 
ceramic powders is usually too high to be achieved by conventional techniques. Second, the melt-casting is 
difficult to eliminate pores, which decreases their mechanical properties. Third, the slow cooling rate means long 
duration at elevated temperature after crystallization of the melt, which leads to coarse grains with poor 
toughness or low hardness [1-3]. 

The method of self-propagating high temperature synthesis (SHS) was founded by Merzhanov and coworkers in 
the 1960s [4]. SHS process evolves large sums of heat and forms a solid product in the chemically active 
systems, and shows some excellences such as self-sustaining reaction, high purity, high productivity and so on 
[5-8]. One of the unique SHS process is combustion synthesis melt casting. When the combustion temperature of 
the combustion reaction is above the melting point of the end products, melt-casting bulk materials can be 
obtained. The combustion synthesis melt-casting process combine the advantages of SHS and melt casting 
techniques and develops a convenient and economic approach to obtain dense, near-net shape components, 
especially ceramics. 

 

Figure 1: Processing routes in combustion synthesis melt casting technology 

As can be seen in Fig. 1, the combustion synthesis melt casting products, including bulk materials, coatings and 
functionally graded materials (FGMs), can be obtained by combustion synthesis melt casting or by direct SHS. 
Some of the combustion synthesis melt casting materials and techniques are listed in Tab. 1. It shows most of the 
interests are fastening on the research of new approaches of syntheses of hard alloys, multifunctional materials, 
ceramics, and various composites. The attractive direct synthesis consists of centrifugal-casting and pressure-
assisted casting. 
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Table 1: Combustion synthesis melt casting techniques and prepared materials. 

types Compositions Techniques Refs 

Bulk 

Mo5Si3 Microwave activated SHS [9] 
TiB2-TiC High-pressure SHS [10] 

Fe-Cr-Ni/Al2O3 Thermite reaction [11] 
Ni-Ti-C/B4C/B SHS-arc melting-suction casting [12] 

Ti base/TiB SHS- non-consumable arc-melting [13] 
Cu-MoSi2 SHS-casting [14] 

Ti-Si SHS-casting [15] 

Zr–Si SHS-casting [16] 

Sn-Pb High-pressure centrifugal infiltration [17] 
TiC-TiB2-MexOy pressure assisted-SHS [18] 

MgB2 SHS-casting [19] 
NiSiCr Applied gas pressure assisted SHS [20] 

MoSi2-SiC Applied gas pressure assisted SHS [21] 
Ni3Al Applied gas pressure assisted SHS [22] 
FeAl Field activated pressure assisted synthesis [23] 
Al2O3 SHS-ultrahigh gravity [24] 
C-C CS [25] 

Cu-TiB2 SHS-quasi-static consolidation [26] 

Coating 

TiC/Ni3Al SHS-casting [27] 
IrAl SHS-casting [28] 
NiAl SHS-high concentrated solar energy [29] 

TiC-TiB2/Fe SHS-argon arc cladding [30] 
NiAl Centrifugal thermite [31] 

Al2O3TiO2TiC/ 
AlFe-AlCrFe-NiFe 

SHS-centrifugal casting [32] 

MoSi2-MoS2 Applied gas pressure assisted SHS [33] 
Ni3Al-Cr7C3 Applied gas pressure assisted SHS [34] 
Ni-Cr-TiC SHS- plasma densification [35] 
FeCr-TiC SHS-laser glaze [36] 
TiC-Al2O3 SHS-hot pressing [37] 

FGMs 

MoSi2-TiB2 SHS- vapor deposition [38] 
Fe-TiC SHS-centrifugal casting [39] 

Ti-B SHS-punching [40] 
MoSi2-SiC SHS-hot pressing [37] 

MoSi2/Al2O3 SHS-tape casting [41] 
Al2O3/YAG/YSZ SHS-high gravity [42] 

In this chapter, some combustion synthesis melt-casting reaction systems developed in recent years, such as 
refractory compounds, intermetallics, as well as advanced ceramics, are introduced, and the solidification 
mechanisms are discussed. 

COMBUSTION SYNTHESIS MELT CASTING TECHNIQUES 

Combustion Synthesis Melt Casting Bulk Materials 

Large numbers of the bulk materials have been prepared by combustion synthesis melt casting in recent years. 
The bulk materials contain metal matrix composites, intermetallics, ceramics, and so on. These combustion 
synthesis melt casting materials possess unique microstructures and excellent mechanical and chemical 
properties, such as high strength, oxidation resistance, corrosion resistance and wear resistance, etc.  
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toughness of composite increased with the increase of the SiC content(Fig. 5). It proves that the toughness of 
brittle materials can be improved by second phases strengthen effects [43, 44].  

  
Figure 4: Microstructure of the MoSi2–SiC composites with 10 (a), 15 (b), 20 (c) wt% SiC[21]. 

  

Figure 5: Hardness and toughness of the MoSi2–SiC composites[21] 

A major limitation of combustion synthesis melt-casting bulk materials is the high porosity in the materials, 
which restricts their practical applications. The pores originate from the volume change caused by the different 
density between reactants and bulk products. On the other hand, evaporation at high reaction temperatures and 
the pores already present in the “green” reactants sample also result porosity. Recent researches have shown that 
this limitation can be minimized or even eliminated by subjecting the reactants green body to a consolidating 
load or by utilizing assistant techniques in the combustion synthesis process, such as adding a proper pressure, 
high gravity field, and centrifugal force. 

A full density TiC–TiB2 composite was prepared by the combustion synthesis melt-casting in a high-gravity field 
[10]. The results of Zhao et al indicated that the key factor controlling the densification process of TiC–TiB2 is 
the liquid phase formed in the products. They found that the reactants consisting of TiC–TiB2 and oxide 
impurities are in the full liquid state after combustion synthesis. The lower density oxide liquid rise to the top 
layer and the product sink to the bottom under the high gravity field (>200g). Moreover, the high gravity also 
accelerates the escape of gas from product liquid. Hence, the introduction of a high gravity field plays a 
predominant role in the densification process of the TiC–TiB2 composites. 

The dense Al2O3 ceramic was obtained by integrating the combustion synthesis technique with the ultra-high 
gravity, which originated from the centrifugal force. Pei et cl [24] designed the equation 2Al + 3NiO = 3Ni + 
Al2O3 to obtain superheated melt consisting of molten mixture (Ni + Al2O3). The melt mixture could be 
separated successfully by their density difference at the gravitational acceleration magnitude over 200g. 
However, there are a few pores present in the as- prepared Al2O3. The authors point out that the pores may be 
possible eliminated completely from the molten Al2O3 if the G value further increases. In fact, a quite dense 
layer of the α-Al2O3 (3.70 g/cm3) obtained as the gravitational acceleration increases to 800g. 
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Figure 9: Interface OM micrographs of the W2C-10vol.%W coating (a) and distribution of the Fe, W elements in 
the interface (b) [22]. 

Centrifugal-thermite process is considered to obtain dense, well-bonded castings. Shaped casting coatings of 
ceramic composites and intermetallic composites can be produced by in situ synthesis and densification of 
ceramic lining to metal substrates under the influence of gravity. Many investigations have examined the use of 
centrifugal-thermite reactions to coat steel pipes with ceramic layers in recent years. Du et al [52] studied the 
effects of additives such as SiO2, CrO3, Na2B4O7 and ZrO2 on the densification degree of the ceramic lining 
copper pipe, which was produced by centrifugal-thermite process. The results show that the densification degree 
of the ceramic layer can be improved by adding SiO2 and CrO3 in the thermite. The bonding strength is increased 
through the addition of a suitable amount of Na2B4O7. But the highest fracture toughness of the ceramic layer is 
obtained at 7 wt.% of ZrO2 in thermite. 

However, there are still now a lot of problems present in the melt casting coatings, for example, the structural 
disadvantages at the metal/ceramic interface in ceramics lining pipes fabricated by centrifugal-thermit process 
and the poor bonding strength of bend pipe have limited their application. And also these problems motivate 
further studies on combustion synthesis melt-casting coatings. 

Combustion Synthesis Melt-Casting Fgms 

Direct bonding of ceramics and metals can generate thermal stresses in practical high-temperature applications 
because of mismatched thermal capacity. The thermal stress causes flaw or debonding at interfaces. The 
functionally graded materials (FGM) can effectively solve this problem. A well-known example is applied to 
create the fuselage exterior and engine materials for space planes which would take off like airplanes, cruise in 
the atmosphere subject to severe frictional heating from the airflow. To fulfill this requirement the composition 
and microstructure are varied throughout the structure and this yields a property gradient within the combined 
materials. The FGM is also introduced to the combustion synthesis melt-casting techniques for improving bond 
strength of the interface. The in-situ reinforced Fe–TiC (Fe–TiC) functionally graded materials can obtain by 
combustion synthesis melt-casting followed centrifugal casting in a single step [39]. 

A rapid and simple way of producing Al2O3/YAG/YSZ ternary eutectics FGM by combustion synthesis melt-
casting was investigated [42]. The combustion reactions between Al/Fe2O3/Y2O3/ZrO2 led to the formation of 
molten mixtures consisting of Al2O3/YAG/YSZ. The formation, separation and densification of molten 
compounds consisting of Al2O3/YAG/YSZ and iron are realized under an ultra-high-gravity field in a short time. 
The as-solidified ceramic ingot sank into the iron melt, where an instantaneous isostatic pressure about 2 MPa 
was exerted on the around of the ceramic ingot, which results in an enhanced degree of densification. 

Combining the graded composition and proper pressure, the adherence of the interface was further enhanced. 
MoSi2/Al2O3 functionally graded materials (FGMs) with alumina contents varying from 20 to 80 mol% have 
been fabricated using a combination of tape casting and pressures-assistant high-temperature combustion 
synthesis [41]. The applied pressure, between 0.9 and 3.4 MPa, significantly increased the adherence between 
the layers and the density of the FGM. When a 1.4 MPa pressure was applied before the ignition and maintained 
during the combustion synthesis and cooling period, the adherence between the different layers became 
satisfactory but a large amount of porosity still remained. But the porosity decreased significantly when the 
applied pressure increased. The larger pores completely disappeared when the applied pressure was 3.4 MPa. 
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