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Preface

It can be said that we are now facing serious and urgent issues regarding the lack of
natural energy resources and fossil fueledriven pollution and environmental degrada-
tion on a global scale. The increase in world population and rampant unregulated
industrial growth have all led to accelerated energy consumption and the unabated
release of toxic agents and industrial wastes into the air and waterways, leading to
pollution-related disease and abnormal climate change such as global warming. In
addition, the earthquakeetsunami disaster of March 11, 2011, which destroyed the
reactors of the nuclear power plants in Fukushima, Japan, has raised serious concerns
over the supply of electric power which seemed to reduce dependency on fossil fuels
but, in fact, requires coolants polluted with radioactive materials and creates highly
radioactive nuclear waste as a by-product.

It is, thus, vital to realize and construct novel energy production and conversion
systems that utilize natural renewable energy and allow sustainable development
without environmental deterioration. The decomposition of H2O into H2 and O2 using
visible lighteresponsive photocatalysts under sunlight irradiation has been intensively
investigated as one of the most promising environmentally benign energy production
systems to address these issues. In the past half century, research on various photoca-
talytic systems using mainly inorganic semiconducting materials such as TiO2 metal
oxides have been carried out. However, to achieve higher efficiency in the production
of H2, more innovative breakthroughs in the development of photocatalytic materials
are strongly desired.

While our industries are constantly providing a variety of new products and mate-
rials based on innovative new technologies, it is also becoming imperative to develop
better methods of recycling and treating waste materials as well. Moreover, we need to
reduce consumption of our limited natural resources and raise awareness of the great
impact such consumerism has on our environment. To address such issues, organic
polymer semiconducting materials such as graphitic-like polymer carbon nitride
(generally named as g-C3N4 for simplicity) and hexagonal boron carbon nitride
(h-BCN) have been investigated as new families of promising visible lighteresponsive
photocatalytic materials.

In this book, current developments in photocatalysis from inorganic semiconduct-
ing photocatalytic materials such as TiO2, SrTiO3, and BiVO4 to organic semiconduct-
ing polymer materials such as g-C3N4 and h-BCN materials are summarized. Special
attention has been focused on a clarification of the reaction mechanisms at the molec-
ular level, the construction and optimization of these photocatalytic materials, and their



application to solar energy conversion systems such as the decomposition of H2O,
fixation of CO2, and degradation of various toxic compounds in the air and water.
Such developments in safe and clean energy production technologies can be consid-
ered one of the most exciting and important research trends for the 21st century and
beyond.

Editors
Xinchen Wang

Masakazu Anpo
Xianzhi Fu

(Xinchen Wang (left), Masakazu Anpo (middle), and Xianzhi Fu (right) at the front of the
Research Institute of Photocatalysis, Fuzhou University, July 5, 2019)

xxx Preface



Seizing solar hydrogen from
water promoted by magic spin
transporting, chiral-induced spin
stateeselective filtering, and
upconversion

13

Wenyan Zhang 1, Gongxuan Lu 2

1College of Material Engineering, Jinling Institute of Technology, Nanjing, China; 2State Key
Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical
Physics, Chinese Academy of Sciences, Lanzhou, China

1. Introduction

Hydrogen is a green energy with high enthalpy and zero environmental pollution. Pho-
tocatalytic hydrogen evolution (HER) is a sustainable and promising way to generate
hydrogen [1e5]. Despite great achievements in photocatalytic HER research, its
efficiency is still limited due to undesirable electron transporting efficiency, high over-
potential, and low stability of some photocatalysts so that they have poor performance
in resisting photocorrosion and poisoning of by-product [2e6]. In recent years, many
investigations have shown strong evidences for spintronic effects on enhancing photo-
catalytic HER.

Firstly, theoretical and experimental investigations both validate that dissipationless
spin transporting is an effective route to promote electron transfer efficiency in suitable
spin transfer medium [7]. In some cases, spin transfer medium could even exhibit
superconducting performance due to dissipationless spin-polarized currents [3]. 2D
transfer media like graphene and some semiconductors like SrTiO3 and La1-xSrxMO3
are all promising candidates for spin transportation. As a result, it is possible to realize
photoelectron spin polarizing and transporting in photocatalytic HER system, for 2D
transfer media and semiconductor are both significant components of photocatalysts.
Some researchers applied heavy atom effect and magnetic induction effect to induce
photoelectron spin polarizing in photocatalytic system. Spin transfer in catalyst resulted
in larger photocurrents (at least two times) and better HER turn-over frequency (up to
200%) in photocatalytic system [2e8].

The second strategy is by chiral-induced spin selectivity (CISS) effect. Studies show
that controlling spin state of OH• radicals in photocatalytic cell can not only decrease
OER overpotential (even to 0 eV) of water splitting but also improve stability and life-
time of photocatalysts. Several strategies have been developed for aligning spin state of
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OH• by utilizing chiral molecules to spin filter photoelectrons; therefore, electron po-
larization can approach 74%, which is significantly larger than some traditional transi-
tion metal devices. Besides, based on those achievements, we discuss challenges and
developing trends of spintronic-enhanced photocatalytic HER research, expecting to
provide valuable information to comprehend and explore such an interdisciplinary field.

Thirdly, upconversion (UC) material has attracted much attention because of its
fantastic energy transfer capability of converting the low-energy photons into high-
energy photons via anti-Stokes process. Among UC materials, the visible-to-UV
UC materials exhibit remarkable potential in laser conversion, photocatalysis, the pho-
tocatalytic sterilization, and photocatalytic antibiosis in hygiene areas because of their
capability of converting the visible radiation into ultraviolet emission. Moreover, UC
process can provide a new route to upconvert infrared light to visible light, which can
be used by visible light-sensitive semiconductor to generate hydrogen. This route pre-
sents a possible way to use about 50% infrared light to generate hydrogen instead of
heating. This work focus on the current state of visible-to-UV UC materials and chal-
lenges in theoretical and commercial perspective.

2. Inducing spin transfer in photocatalytic system to
promote hydrogen evolution

2.1 Heavy atomeinduced charge intersystem crossing
relaxation

In a typical sensitized HER photocatalyst composed of semiconductors, dye sensitizer,
two-dimensional (2D) transfer media (such as RGO and g-C3N4), and cocatalysts [9],
singlet and triplet state photoelectrons are generated from excited EY dye molecules
by visible light irradiation, then migrate into RGO due to effective energy matching be-
tween excited dye and RGO, and reduce protons to hydrogen when they encounter co-
catalysts on RGO (see Fig. 13.1). Given that singlet state photoelectrons spin antiparallel
while triplet state photoelectrons spin parallel, spin polarizing those photoelectrons

Figure 13.1 Proposed photocatalytic mechanism for efficient H2 evolution over a xanthene
dyeesensitized graphene/metal photocatalyst under visible light irradiation [9].
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could be realized if one can enlarge intersystem crossing (ISC) relaxation probability to
promote singlet state electrons relaxing to their triplet state (illustrated in Fig. 13.2).
However, ISC relaxation probability is very low due to spin-forbidden rules, so some
strategy should be done to break the spin-forbidden rule [2,10].

Heavy atom can break spin-forbidden rules on ISC relaxation of dye (called heavy
atom effect) and result in spintronic-enhanced photocatalytic HER [2,3,8]. Lu et al.
found that heavy atomeinduced large spineorbit (SOC) interaction is effective for
breaking spin-forbidden ISC relaxation [2]. As illustrated in Fig. 13.3, they decorated

Figure 13.2 Modified Jablonski diagram for electron intersystem crossing (ISC) relaxation
from excited singlet state to excited triplet state [10].

Figure 13.3 Iodine atomeinduced spin polarizing and injecting in photocatalytic HER reaction
[2].
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iodine heavy atoms on RGO sheets as a transfer media to facilitate electron spin polar-
izing and injection into RGO sensitized, respectively, by Rose Bengal (RB), Fluores-
cein sodium (FS), and Erythrosin B (EB) dye. Because of their high nuclear charges,
heavy atoms can induce SOC interaction between the electrons’ spin and their orbital
motion around the nucleus to break the spin-forbidden rules for ISC relaxation. Optical
and electronic tests provide additional evidences of photoelectrons polarizing to form
spin-polarized currents, for iodine atoms promoted ISC relaxation via strong SOC
interaction. The turn-over frequency (TOF) of HER was enlarged up to 200% with bet-
ter photoelectron transfer efficiency.

Heavy atom-induced ISC relaxation is especially convenient and suitable for spin
transfer in liquid photocatalytic reaction system, compared with tranditional methods
which commonly induce spin polarizing by strong electronic/magnetic field
(Fig. 13.4A) or circularly polarized light (Fig. 13.4B) [11,12], as both methods require
special instruments so their complexity and cost are increased. In contrast, heavy
atomeinduced ISC relaxation does not need any instruments.

2.2 Heavy atomeinduced electron spin-flip and tunneling

Heavy atoms are also capable of generating strong Rashba spin-orbit coupling (SOC)
on 2D transfer media to make the transferred electrons flip to spin parallel, thus pro-
moting the spin polarizing degree of photocurrents [2,3,8]. Partially fulfilled p or d or-
bits of heavy atom could form hybrid orbits with 2D transfer media, and that
transferred electrons can tunnel on the 2D transfer media by hopping through those
hybrid orbits [7].

As illustrated in Fig. 13.5A, RGO honeycomb lattice is constructed by carbon
atoms which form s and p bonds by sp2 hybridization of 2s orbits and 2p orbits
[7]. The semimetal property of RGO is mainly ascribed to the contribution of 2p orbits.
When heavy atom clusters are assembled on RGO (Fig. 13.5B), their high nuclear
charges induce Rashba SOC on RGO. Because of the reflection symmetry to the lattice
plane, only the SOC in the normal direction (Lzsz) has nonzero contribution to elec-
tron flipping [3,7]. Therefore, the Hamiltonian of heavy atomedecorated RGO could
be simplified and described as Formula 13.1:

H¼HR
SO þ dH (13.1)

Figure 13.4 Two methods for spin polarizing and injecting induced, respectively, by
(A) external electronic/magnetic field and (B) circularly polarized light [12].
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where HR
SO corresponds to Rashba SOC on RGO, and dH corresponds to the

dependence of electron hopping energy on impurity, defects, and sp3 distortion in
RGO lattices.

Rashba SOC on RGO induce a coupling between first neighbors with opposite spin,
which could be described as Formula 13.2

HR
so¼ il

X
<iA;jB>;s;s;

�
m̂iA;jB

�
z

��Z;iA;s> < Z;jB;s
;
�� (13.2)

m̂iA;jB is the unit parallel vector, s is the electron spin Pauli matrices, and jZ,iA,s>
represents the wave function of an electron which occupies a carbon pz orbits.

dH, the dependence of electron shopping energy, includes a spin-orbit coupling part
and a crystal field HCF term. Its Hamiltonian could be described by Formula 13.3:

dH¼Dso L
!
,/sþ HCF (13.3)

where Dso is the spin-orbit coupling parameter, L
!

and /s are the usual angular
momentum and spin operators. Parameter L

!
,/s and HCF could be described by

Formula 13.4 and 13.5, respectively:

L
!

,/s ¼ 1=2

2
6666666666664

0 �i 0 0 0 1

�i 0 0 0 0 �i

0 0 0 �1 i 0

0 0 �1 0 i 0

0 0 �i �i 0 0

1 i 0 0 i 0

3
7777777777775

����px [ > ; jpxY> ;
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13.4

Figure 13.5 Scheme of (A) electrons’ tunneling with the aids of heavy atom p orbitals and
(B) electron spin-flip and tunneling on RGO due to Rashba SOC induced by heavy atom [2].
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HCF ¼

2
6666666666664

εx 0 0 0 0 0

0 εy 0 0 0 0

0 0 εz 0 0 0

0 0 0 εx 0 0

0 0 0 0 εy 0

0 0 0 0 0 εz

3
7777777777775

ðεx¼ εy s εzÞ (13.5)

Because of their high nuclear charge density, heave atoms on RGO induce irregular
electric fields at their periphery. The irregular electric fields E

!
could be described as

Formula 13.6:

E
!¼ 1

4pε0

Q

r2
r̂ (13.6)

ε0 ¼ 8.85 � 10�12 C2/(N�1$m2) is the vacuum dielectric constant, r is the distance
between two charges, and Q ¼ 1.602 � 10�19C represents the point charge that is
elementary charge.

The irregular electric field E
!

could induce a large Rashba spin-orbit coupling to
facilitate electron spin-flip and an idiosyncratic Hall conductivity. The Hall conductiv-
ity could be written as Formula 13.7:

u¼u[þ uY ¼ 2
e2

h
(13.7)

where u is the Hall conductivity of material, u[ and uY represent different directions
of the spin, and h ¼ 6.626 � 10�34J$s is the Planck constant.

By assembling RGO with Au atoms, Marchenko et al. realize electron spin polar-
izing of those Au atomeinduced giant spin-orbit splitting (up to 100 meV) to facilitate
electron flip-flop [13]. Brey [7] and Miranda et al. [14], respectively, assembled Pb
layer periodically on RGO (Fig. 13.6A) and discovered that Pb atoms can also trigger

Figure 13.6 (A) Scheme of the atomic arrangement for RGO decorated by Pb atoms and
(B) spatial evolution of the SeO coupling across the border of the Pb-intercalated regions [14].
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quantum spin Hall effect for electrons by inducing giant Rashba-like SOC, thus
providing Pb-RGO composite layers with special electron transport nature
(Fig. 13.6B). Lu et al. proved that Rashba SOC could be induced by iodine atoms
not only on RGO but also on g-C3N4 sheets [8]. Iodide atomedecorated RGO and
g-C3N4 exhibited better charge transfer performance due to spin transfer, tunneling,
and higher HER rate and TOFs.

2.3 Electron transporting enhancement by magnetic-induced
spin polarizing

Magnetic induction is capable of generating high Zeeman splitting energy to polarize
electrons spin states, thus regulating transporting performance of photoelectrons in
transfer media [2]. When magnetic field is enlarged from 1.75 to 27.5 T, the conduc-
tance of bilayer RGO increases from 10�1 e2/h to 101 e2/h with its transfer from
antiferromagnetic phase to ferromagnetic phase (Fig. 13.7A) [15], due to magnetic-
induced electron spin polarization on bilayer RGO (illustrated in Fig. 13.7B1 and
B3). Antiferromagnetic phase has poor electron transfer capability as its LUMO
and HOMO levels are split (Fig. 13.7B2). In ferromagnetic bilayer RGO, electron
spin polarizing leads to counterpropagating of edge states, thus the LUMO and
HOMO levels are intersected to result in better conductivity, even metallic conduc-
tance (Fig. 13.7B4), which can promote photocatalytic HER rate by enhancing elec-
tron transporting capability of RGO.

2.4 Important advantages of spin transportation in
photocatalytic HER system

SOC intensity depends highly on the concentration of heavy atoms and their distributions
in photocatalysts [2,3,8], thus one can enhance spin transfer efficiency conveniently by

Figure 13.7 Magnetic-induced spin transfer on bilayer RGO and the topological structure of
bilayer. (A) Spin conductance variation with magnetic field; illustrations of spin and pseudo
spin configurations for antiferromagnetic phases (B1) and ferromagnetic phases (C1), in the
BLG n ¼ 0 state; Diagram of predicted bulk and edge energy levels for antiferromagnetic
phases (B2) and ferromagnetic phases (C2) [15]; (red balls: carbon atoms on one RGO layer;
blue balls: carbon atoms on the other RGO layer).
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regulating the type and distribution of heavy atoms on photocatalysts. Based on Raman,
XPS characterization, and theoretical calculation, Lu et al. found that the I atoms exist as I3

-

and I5
- clusters on theRGOsheets (seeFig. 13.8). I3

- has twodifferent geometries, the linear
chain and triangle chain, while the ground-state energy of linear chain is about 0.001 eV
lower than that of triangle species. The I5

- also has two different geometries, the linear
chain and planar square. Similarly, linear chain of I5

- is more stable as it has lower
ground-state energy than planar square geometry. Therefore, the I3

- and I5
- clusters exist

as linear chain structure which were randomly placed on RGO sheets. HER reached
the maximum when I/Cmol% was 1. As for I atom-decorated g-C3N4, results showed
that I atoms also exist as I3

- and I5
- linear chain clusters on g-C3N4 sheets, located in

C1eC2 and C4eC5 directions (Fig. 13.9). Electrons in C1 or C4 could tunnel through
the p orbitals of I3

- and I5
- clusters to C2 and C5, thus promoting electron transferring

and separating capability of g-C3N4 sheets and promoting HER [8]. Photocurrents
were enlarged at least two times because of spin polarizing of photoelectrons.

Placing Pb atoms in hollow positions of carbon atoms in RGO could open energy
gap at its Dirac points, inducing spin-conserving intrinsic like SOC for RGO
(Fig. 13.10A1 and A2 [7]). In that case, energy gap increased linearly proportional
to the density of Pb atoms and could reach 100 meV when Pb atom concentration
rose up to 20% of the carbon atom. Placing Pb atoms on top of carbon atoms not
only induced spin-conserving intrinsic like SOC but also resulted in Rashba-like
spin-flip hopping for RGO (Fig. 13.10B1 and B2). d orbits of Pb atoms were hybrid-
ized with carbon atoms to form hybridized orbit, so electron migration was effectively
promoted because they could hop and tunnel through RGO.

As for Au atom-decorated RGO, their spin-orbit splitting was only 9 meV near EF
(Fermi energy) when the Au atom layer was far from RGO (Fig. 13.11A) [13]. In
this case, the A-B symmetry of carbon atoms were broken in the on-top geometry if
they put Au atoms on top of carbon atoms and that induced large SOC interaction to
open energy gap (up to 40 meV) at its Dirac points. The A-B symmetry of carbon atoms
could be preserved if they place Au atoms in hollow sites of carbon atoms (Fig. 13.11B).
In that case, a giant SOC interaction (up to 70 meV) was generated and orbit hybridiza-
tion was formed between 5d orbit of gold atoms and p orbit of carbon atoms. Hollow
sites of carbon atoms are suitable place for Au atoms to generate large SOC with
60 meV even when Au atom ratio was reduced to 25% (Fig. 13.11C).

Figure 13.8 (A) Schematic diagram of preparing of I atoms decorated RGO; (B) Scheme of I3
-

and I5
- cluster isomers with different energy calculated by density functional theory (DFT) [3].
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2.5 Challenges of applying spin transfer strategy in
photocatalytic HER system

The challenges are still remained, such as to uncover mechanism of spin transfer in
complex environment, lack of appropriate characterization, especially real-time detec-
tion, and design low-cost techniques to synthesize nano-scaled photocatalysts for

Figure 13.9 Spin transfer and tunneling on g-C3N4 via the aids of p orbital of polyiodides [8].

Figure 13.10 (A1) Pb atoms in hollow positions of RGO; (A2) energy gap and Dirac points of
RGO [7]; (B1) Pb atoms on Top of RGO; (B2) energy gap and Dirac points of RGO [12].
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spintronic-enhanced photocatalytic HER. Besides, present spintronic theories may not
be suitable for photocatalytic HER due to the complication of liquid photoatalytic
enviroment, so new model based on real reaction environment is highly demanded.
Furthermore, there is a lack of real-time spin detection and sensing techniques with
high testing accuracy. Additionally, it is still hard to prepare nano-scaled photocata-
lysts for spintronic-enhanced photocatalytic HER, for molecular beam epitaxy and
nanoimprint lithography are complex and high cost.

3. Chiral-induced spin selectivity effect on promoting
water-splitting effect

3.1 Chiral-induced spin selectivity theory and its application in
water splitting

Chiral molecules have a special capability of “filtering” the spin state of electrons. As
illustrated in Fig. 13.12A, electrons will be spin polarized when they pass through he-
lical electric field of chiral molecules, and that effect is called CISS effect [16,17].
CISS-induced electron polarizing in decorated with proteins, DNAmolecules, and hel-
icenes [18,19]. By chiral-induced spin filtering, electron polarization can approach
74%, which is significantly larger than some traditional transition metal devices.

Figure 13.11 Effect ofAuatomconcentrationanddistributionon spin transfer and electron tunneling
for Au-decorated RGO sheets: (A) Au (orange circle [gray in print version]) atoms on top of carbon
atoms, (B) Au atoms in hollow sites of carbon atoms, (C) reducingAu atom numbers in hollow sites
of carbon atoms [13].
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As shown in Fig. 13.12A, supposing an electron passing through the helical electric
field (Ehelix

			!
) of a chiral molecule, Ehelix

			!
will induce a magnetic field (B

!
) in rest frame

of the electron, and B
!

could be described as Formula 13.9 [18]:

B
!¼ v!

c2
Ehelix
			!

(13.9)

In Formula 13.9, n! is the electron’s velocity, and c is the speed of light.
Based on Formula 13.9, the magnetic field ( B

!
) can generate enough large spin-

orbit coupling (SOC) interaction between the electron and atom nuclei of the chiral
molecule [18]. For instance, supposing an electron moves in a 4.5 � 1011 V m�1 he-
lical electric field (Ehelix

			!
), 3T magnetic field can be generated even when n! is only

0.2% of the speed of light. Therefore, hamiltonian of SOC interaction could be
described as Formula 13.10, which originates directly from Pauli equation.

HSO ¼ l s!
�
p!�Ehelix

			!�
¼ l s!



p!� B

!
c2

v!
�

(13.10)

l ¼ ðeZÞ=�4m2c2
�

where p! is the electron’s migrating momentum, n! is the electron’s velocity, and m is
electron mass, c is the speed of light. s!, which expresses electron spin state, is a vector
whose components are the Pauli matrices of sx, sy, and sz.

When electrons move in magnetic field B
!
, they will be spin polarized by large SOC

generated between the electrons and chiral molecules. From Formula 13.10, it is also
obvious that the SOC interaction depends highly on the intensity and direction of he-
lical electric field Ehelix

			!
. Meanwhile, Ehelix

			!
is closely related to the structure of chiral

molecule, relying on their turns and magnitude along pz, as shown in Fig. 13.12B.

Figure 13.12 (A) An electron migrating through the helical electric field of a chiral molecule
(B) dependence of spin-orbit coupling (SOC) intensity on helical electron field of chiral
molecules [18].

Seizing solar hydrogen 201



Therefore, it is potential to enhance CISS efficiency by choosing suitable chiral mol-
ecules to improve electron spin polarizing degree.

3.1.1 CISS effect of spin polarizing on photocatalytic HER

Assembled a series of chiral molecules onto different photocatalysts like CdSe
(Fig. 13.13A[20]), TiO2 [24] and metallic materials like Ag (Fig. 13.14A), Au
(Fig. 13.14B), and Ni layer (Fig. 13.13B and C) provided that photoinduced electrons
or holes were spin polarized due to CISS effect on spin filtering [21]. Spin polarizing
degree of photoelectrons depends on chiral molecule structure.

3.2 Essential advantages of CISS effect on promoting water
splitting

3.2.1 CISS can lower down water-splitting overpotential for HER
and prolong the photocatalysts lifetime by CISS effect

Splitting water for HER often encounters high overpotential due to large overpotential
needed for water oxidation (OER). Current researches have revealed strong evidences
that side reactions of H2O2 yielding is a significant reason for high overpotential of
water-splitting reaction [22e23]. Water-splitting overpotential roots from restrictions
on the electrons’ spin in generating a ground-state triplet oxygen molecule. It is sug-
gested that two spin-paralleled hydroxyl radical intermediates (OH•) combine to form
triplet state O2 (Fig. 13.15A and B) in photocatalytic water splitting, while two spin
antiparallel OH• radicals are prone to form singlet-state H2O2, so a promising way
to decrease overpotential and inhibit side reactions of H2O2 yield is to polarize OH•
spin state during water-splitting reactions by coating anode with chiral molecules,
which can spin filter photo-electrons via CISS effect, as Ron et al. proposed [22e24].

Figure 13.13 (A) Schematic illustrating the setup used for the light-controlled spin-dependent
electrochemical measurements across AL8-CdSe NPs assemblies. Working electrode was
magnetized “UP” or “DOWN” (white and yellow arrows [light gray in print version],
respectively) during the electrochemical measurements. The CdSe NPs were excited by a green
laser (lexc¼ 514 nm). (B) Before photoexcitation, the CdSe-NPs are positively charged and
electrons are transferred with their spin aligned parallel to their velocity. (C) During photo-
excitation, the NPs become negatively charged. The electric field on the AL8-CdSe is in the
opposite direction and thus the electrons with spin antiparallel to their velocity are preferen-
tially transferred [20].
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Controlling spin state of OH• radicals can lower down OER overpotential by inhib-
iting side reaction of H2O2 yield [3]. Ron and Mtangi et al. fulfilled it by CISS-induced
electron spin filtering in water-splitting reaction system [22e24]. As illustrated in
Fig. 13.16A and B, they assembled CdSe and TiO2 photocatalysts with chiral mole-
cules which have helical electric field to spin filter photogenerated photoelectrons
via CISS effect to prove the effect of spin aligning on reducing OER potential and
enhancing HER efficiency. OER overpotential decreased obviously on photocatalysts
decorated with chiral molecules, decreased 0.17 eV with AL5 and AL7, and even was
reduced to 0 V when coating photocatalysts with DNA molecules (Fig. 13.17A).
In contrast, OER overpotential was higher than 0.5 eV decorated with achiral mole-
cules of 4-MBA, MPA, and MUA (Fig. 13.17B).

Figure 13.14 (A) Scheme and energy state diagrams of photocatalyst/device designed for
realizing CISS-induced spin filtering for photogenerated electron. The photocatalyst/device
designed by assembling chiral molecules on Ag/AlOx/Ni multilayers; (B) diagram showing
how the secondary electrons produced by X-ray irradiation become spin-polarized, with their
spins aligned antiparallel to their velocity, and induce chiral selective chemistry in adsorbed
(R)- or (S)-epichlorohydrin.

Figure 13.15 (A) Illustration of photocatalytic reaction to generate O2 and H2O2 by-products and
(B) energy level illustration of overpotential on producing O2 and H2O2 by-products [22e24].
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Moreover, in their investigation, H2O2 detection proved that spin aligning of OH•
radicals via CISS effect can effectively inhibit the H2O2 production as well. That is
good for improve the stability and lifetime of photo/electronic catalyst, considering
that H2O2 detection proved that spin aligning of OH• radicals via CISS effect also res-
luted in lower H2O2 production [22e24]. As shown in Fig. 13.18A and B, H2O2 were
produced over bare TiO2 and TiO2 coated by achiral molecule A-Zn and A-TPyA,
while little H2O2 were generated on TiO2 decorated by chiral molecule SeZn and

Figure 13.16 (A) Photoelectrochemical cell designed for realizing CISS-induced spin filter in
photocatalytic water splitting. The cell composed by CdSe nanoparticles, TiO2

nanoparticles, chiral molecules, and FTO and Pt electrode. (B) Energy level scheme for the
designed cell [23].

Figure 13.17 Time-resolved hydrogen evolution over photocatalysts coated with (A) chiral
molecules and (B) achiral molecules [23].
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S-TPyA. The mechanism is shown Fig. 13.18C and D. For TiO2 coated by achiral
molecule (Fig. 13.18C), photogenerated OH• radicals were not spin polarized and
two antiparallel OH• interacted to produce H2O2. For TiO2 coated by chiral molecule
(Fig. 13.19D), photogenerated OH• radicals were spin polarized and they interacted to
yield triplet O2.

4. The important role of upconversion material in
promoting water oxidation

In recent years, UC material has attracted much attention because of its fantastic energy
transfer capability of converting the low-energy photons into high-energy photons via
anti-Stokes process [25,26]. Two or more photons were absorbed sequentially by a ma-
terial to reach an excited state, which could release one higher-energy photon then, such

Figure 13.18 UV-vis absorption spectra from the titration of electrolyte (Na2SO4) with o-
tolidine of bare TiO2 and TiO2 electrodes coated with (A) self-assembled Zn-porphyrins of
achiral (A-Zn) and chiral (SeZn); (B) TPyA molecules of achiral (A-TPyA) and chiral (S-
TPyA). The control refers to the titration of unused Na2SO4 with o-tolidine; (C) two spin
antiparalleled electrons on anode facilitating the yield of two spin antiparallel OH•, which
interact to form singlet H2O2; (D) Two spin-paralleled electrons on anode facilitating the yield
of two spin aligned OH•, which interact to form triplet O2 [24].
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as IR-to-visible light, visible-to-UV light and visible-to-higher energy visible. UC con-
verting efficiency depends highly on the dopping tolerance, refractive index, phonon en-
ergy and chemical stability of matrix [27]. Given current stable TiO2 and Ti-based
photocatalysts mainly respond to UV irradiation, and sulfide and Selenide-based photo-
catalysts could work under visible light irradiation, one can combing the advantages of
these UV-responsive and visible-light-responsive photocatalysts by applying visible-to-
UV UC material as bridge to promote visible lightedriven water splitting.

Recently, Lu et al. successfully explored aforementioned strategy by combining
Pr3þ-CTO with the visible-to-ultraviolet UC unit for water splitting. The visible-to-ul-
traviolet UC unit was able to transfer incident visible radiation to UV light emission.
Owing to large area of heterojunction constructed between the visible-to-ultraviolet
UC unit and UV-responsive photocatalyst, the yielded UV light was utilized success-
fully by the UV-responsive photocatalyst (Fig. 13.19) [28,29]. The photocatalytic ac-
tivity for hydrogen generation has been raised up to 480% with excellent stability in
three recycle reactions and charge lifetime was also prolonged.

Consequently, it could be expected that the visible-to-ultraviolet UC materials will
play important theoretical and commercial role in photocatalytic research fields by
assembling them with UV-responsive photocatalysts. The convenient strategy has
good versatility for most UV-responsive photocatalysts to realize overall split water
by visible light irradiation.

5. The future of spin transfer, CISS effect, and
upconversion strategies on promoting water splitting

Until now, plenty of scientific evidences show positive effect of spintronics on
enhancing photocatalytic HER. On one hand, triggering the spin polarizing

Figure 13.19 Photocatalytic mechanism of hydrogen evolution over CaTiO3/Pr
3þeY2SiO5/

RGO catalyst [29].
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and transporting of photoelectron can result in more efficient photocurrent trans-
fer for HER reactions. On the other hand, spin aligning of OH• is found to be
effective to decrease OER overpotential and reduce by-product yield during wa-
ter splitting reaction, and this maneuver has been realized by CCIS-induced spin
filtering and polarizing in photo/electronic catalytic systems. Despite these ad-
vantages, spintronic-enhanced photocatalytic HER still meets several obstacles
including developing and innovating intrinsic mechanisms, constructing real-
time sensing and monitoring detection device, as well as developing more
efficient and economic synthesis techniques and instruments for spintronic photo-
catalysts. Fortunately, modern spintronic achievements in topological insulator,
quantum spin Hall effect, and chiral interface growth shed new light on tackling
those obstacles. Based on its intrinsic advantages and big achievements, it is
reasonable to expect the interdiciplinary research of photo/electronic catalysis
and spintronic science will have gorgeous furture. Meanwhile, owning to its abil-
ity to manipulate and convert light energy, the visible-to-UV UC or even
infrared-to-visible light materials possess huge potential in solar lightedriven
water-splitting fields to facilitate higher efficiency for HER, OER, and overall
splitting water (for example > 15%) when combing them with high efficient
UV-responsive photocatalysts. More than expectations, the strong interactions be-
tween electron, charged atom (i.e., hydride), and nuclei can lead to unexpected
low-energy nuclear reaction or even nuclear transmutations under very mild con-
ditions (for example, potassium to calcium transmutation) [30e33]. All those ef-
forts make resolving the worldwide energy crisis and accompanied environmental
problems promising.
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1. Introduction

Nowadays, improving air quality has become a globally urgent issue. The emission of
nitrogen oxides (NOx) family that include nitric oxide (NO), nitrogen monoxide (NO),
nitrogen dioxide (NO2), nitrous oxide (N2O), and their derivatives belongs to tropo-
spheric air pollutants and has a wide range of human health, environment, and biolog-
ical ecosystem impacts [1].

In the past three decades, the research in the field of NOx abatement, including NO
oxidation, NO decomposition, and NO selective catalytic reduction (SCR) by reducing
agents (carbon monoxide (CO), hydrogen (H2), ammonia (NH3), hydrocarbons (HC)),
has grown significantly. Over the decades, the SCR has been developed and applied
widely in industry, remained the mainstream approach to eliminating NOx. To reach
the working temperature that is required by SCR, an SCR system is usually installed in
front of cyclone dust collectors and desulfurization systems. However, SCR compo-
nents are also installed elsewhere to prevent catalysts from poisoning particles and sul-
fur compounds. In such arrangements, flue gas will not be sufficiently hot to preheat an
SCR system, so additional heating equipment should be incorporated.

Recently, photocatalysis technology, which could effectively work under low reaction
temperature and efficiently reduce energy consumption, becomes a promising approach
for NOx abatement [2]. Generally, the photocatalytic NOx abatement mainly includes
three different routes: photooxidation, photodecomposition, and photo-SCR. For the
photooxidation of NOx, this method transforms NOx into NO2, nitrates NO3

� that
need to be washed from the surface of the photocatalyst. Photo-SCR and photodecom-
position, which are belonged to reduction methods, convert NO into N2 and other harm-
less gaseous compounds. The photo-NOx abatement offers many advantages, these
include (a) excellent N2 selectivity with considerable NOx conversion at ambient temper-
atures and pressures, (b) cost-effective, (c) environmental energy harvesting based on so-
lar light, (d) energy saving, no extra heat required, (e) no extra reactants required, and (f)
NOx recovered as nitrates NO3

�, which is a conceivable raw material for fertilizers [2].
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In this chapter, primary attention is given on discussing the progress and develop-
ment of photocatalytic NOx abatement, including photocatalysts, their photocatalytic
performance, photoreactor, and photomechanism. The overall conclusion is drawn
with the potential future research direction in the development of photo-deNOx.

2. Tailoring the photocatalysts for photocatalytic NOx
abatement

Although there has been extensive research on photo-NOx abatement, its photocata-
lytic efficiency is still needed to be further enhanced. Because the activity of a simple
photocatalyst is early determined, then the first step is to modify its photocatalyst.

2.1 Photocatalysts for photooxidation of NOx

Titanium dioxide (TiO2) is a highly studied semiconductor due to its nontoxicity,
chemical stability, wide availability, nonexpensive, structural, and electronic proper-
ties [3]. At present, titania-based photocatalysts, among candidates, have also received
the most attention included TiO2, ultrafine TiO2 particles, Pd-modified TiO2 (PdO/
TiO2, Pd/TiO2), TiO2/MCM-41, TiO2 loading on woven glass fabric, TiO2 coatings
containing aluminum particles, TiO2 nanoparticles incorporated in a polymer matrixe
based coating, and TiO2 coatings elaborated by various thermal spraying methods.
However, it is noted that titania has a removal efficiency insufficient for practical
use. On light irradiation of TiO2 in the air or O2 and N2 mixtures polluted with NO,
the formation of NO2 could partly adsorb on the surface of TiO2 then block the active
sites of its surface, resulting in shortening its lifetime [4].

To solve the above issue, there have been many studies on improvement of its ac-
tivity by dispersing TiO2 on the supports with a high adsorption capacity. For example,
TiO2 zeolite composites, TiO2 dispersed over alumina support (TiO2/Al2O3), TiO2

immobilized on activated carbon filter (TiO2/AC), a composite TiO2emetal com-
pound (MC) sheet with the MCs were used such as CaO, MgO, CaCO3, Al2O3,
Fe2O3, and TiO2-AC-Fe2O3. As expected, the combination of photocatalyst TiO2
with adsorbents appears to have higher photocatalytic efficiency. The above studies,
however, are mostly conducted under UV light irradiation. Therefore, there is a
need for developing the photocatalysts that could shift the absorption edge to longer
wavelength (l > 400 nm).

Doping of titania with metals/metal oxides has been proposed; these include Pt/
TiO2, Sn/TiO2, Rh/TiO2, Mn/TiO2, and transition metaleloaded M (Cu, V, and Cr)/
TiO2. However, the drawback of this method is the metal ions/metal oxides dopant
might act as recombination centers of e� and hþ [5]. Hence, extensive study has
been conducted on the development of the anion-doped TiO2, such as N-doped
TiO2, C-doped TiO2, B, N-codoped TiO2, Fe-loaded N-doped TiO2, and Pt-loaded
N-doped TiO2. On another approach, the method to modify the surface of powder
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materials by a low-temperature plasma treatment is also received considerable atten-
tion, including the hydrogen plasmaetreated TiO2 powders.

The following focus of photocatalysts for photocatalytic oxidation of NOx is active
to improve the photocatalytic efficiency, lifetime, and visible lighteresponsive
behavior of photocatalysts. Although the efficiency in photooxidation of NOx is desir-
able, this technique does not close to the targets set for practical use. The reason is that
photooxidation would transform NO into HNO3 via the formation of HNO2 and NO2
which bring some disadvantages for this process, such as (a) higher toxicity and sta-
bility of NO2 than that of NO and (b) the formation of nitrates NO3

� on photocatalyst
surface that requires consistent catalyst regeneration.

2.2 Photocatalysts for photodecomposition of NOx

Various photocatalysts, such as TiO2, Ti/Y-zeolite, Ti/ZSM-5, Ti/HMS, Ti/MCM-41,
Cuþ/SiO2, Cr/TiO2, V/TiO2, Ag/TiO2, Cu

þ/ZSM-5 zeolites, and Agþ/ZSM-5 zeolites,
have been developed efficiently to function with UV and visible light for the photoca-
talytic decomposition of NOx. It notes that the photodecomposition of NO is found to
strongly depend on the local structure of the incorporating transition metal ions (Ti, V,
Cr, Cu, Ag, Mg) [6]. Firstly, the implanted metal ions only modify the electronic prop-
erty of the photocatalyst to enable the absorption of visible light and do not work as the
electronehole recombination center. Second, the highly dispersed isolated metal ions
play a vital role in the initiation of the photodecomposition of NO into N and O. To the
best of our knowledge, photodecomposition is an ideal process. However, it has not yet
been investigated in the presence of other compounds, especially O2 and H2O, which
typically pose problems for the photocatalytic reactivity.

2.3 Photocatalysts for photo-SCR of NOx

Using photoenergy as the driving force, photo-SCR of NOx is desirable for energy-
saving purposes. It occurs on a photocatalyst surface under light irradiation and
involves the reduction of NOx with the reducing agents, such as NH3, CO, or hydro-
carbons. Without these sacrificed reductants, the selectivity toward the formation of
NO2, a more toxic type of NOx as compared with NO, could be occurred [7].

2.3.1 Photocatalysts of photo-SCR with NH3

Much research has been done over titania-based photocatalysts for photo-SCR with
NH3-reducing agent (NH3/photo-SCR), these include TiO2, pressed wafers of TiO2,
TiO2 nanotube arrays, WO3/TiO2, Si/TiO2, MnO2-(Co3O4)/TiO2, and transition metal
(V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ta, or W) oxideemodified TiO2.
Among various titania-based photocatalysts, WO3/TiO2 shows the best photo-
deNOx activity at the gas hourly space velocity (GHSV) of 16,000 h�1 (as shown
in Fig. 14.1), which might be only sufficient in typical stationary sources such as po-
wer plants, blast furnaces, and incinerators. However, a very high GHSV value
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(approximately 100,000 h�1) is required in diesel engines owing to the limited instal-
lation space of the photo-deNOx process and a high flow rate of the exhaust gas [8].

Extension of the absorption wavelength to the visible light region is an effective
way to improve the photocatalytic activity by dye-sensitizer, included TCPP (tet-
ra(p-carboxyphenyl)porphyrin) and Ru(2,20-bipyridyl-4,40-dicarboxylic acid)2(NCS)2
complex (N3-dye). Among 15 different dyes modified TiO2, Ru(2,20-bipyridyl-4,40-
dicarboxylic acid)2(NCS)2 complex (N3-dye) could achieve the best performance
(NO conversion >99%, N2 selectivity >99%) at a high GHSV of 100,000 h�1 after
30min of visible light irradiation (l > 400 nm) [9].

In another approach, composite mixed oxides, especially perovskite-type photoca-
talysts, have also considered as a group of promising catalysts for photo-SCR as they
are at a lower price, mixed valence states of the transition metals, and higher stability.
Many efforts are undergoing to study and propose some promising candidates with
excellent performances, such as LaFe04Mn0.6O3/attapulgite (ATP), nitrogen-doped
carbon quantum dots (N-CQDs)-modified PrFeO3/palygorskite (Pal), LaFe0.5-
Ni0.5O3/Pal, and Pr1-xCexFeO3/Pal. Interestingly, Pr0.7Ce0.3FeO3/Pal performs an
excellent catalytic activity (the NO conversion achieves 92%, and N2 selectivity
reaches nearly 99%) at a high GHSV of 50,000 h�1 with a remarkable resistance to
SO2 and H2O poisoning [10]. Together with the dye-sensitized photocatalysts,

Figure 14.1 The conversion of NO in the photo-SCR with NH3 over various metal oxide
transition metal oxides (1.0 wt%) to modify TiO2 photocatalysts. Reaction conditions: NO,
1000 ppm; NH3, 1000 ppm; O2, 2%; Ar balance; GHSV ¼ 50,000 h�1.
Data was collected from Yamazoe et al. Research on Chemical Intermediates, 34 (2008)
487e494.
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perovskite-type photocatalysts are expected to open up new windows for industrial
denitrification applications.

2.3.2 Photocatalysts of photo-SCR with CO

Although NH3-reducing agent can effectively reduce NO under light irradiation, a risk
of ammonia leakage and its corrosive nature make it unfavorable for environmental
applications. It is well known that CO is one of the main toxic gaseous pollutants
emanating from an automobile exhaust that requires prevention and control measures
[11]. To deal with the above issues, an ideal route to eliminate these pollutants simul-
taneously is through photo-SCR with CO as a reducing agent (CO/photo-SCR). How-
ever, it is noted that most developed photocatalysts efficiently function with only UV
light; these include TiO2, Ru/TiO2, Rh/TiO2, and Cu/TiO2, 1% Pd/TiO2 and
Ti1-xPdxO2-d (where x ¼ 0.05e0.3), AgeTiO2, Ru/TiO2, single-site photocatalysts:
M/SiO2 (M ¼Mo, V, and Cr), and MoO3/SiO2.

2.3.3 Photocatalysts of photo-SCR with hydrocarbons

As a potential alternative without those drawbacks inherent in the NH3/photo-SCR, the
photo-SCR with hydrocarbons (HC/photo-SCR) also offers many advantages, such as
a convenient and inexpensive process due to the presence of unburned hydrocarbons in
the exhaust gas. There has been an intensive study on many hydrocarbons for the HC/
photo-SCR, such as CH4, C2H4, C2H6, C3H6, C3H8, and C4H10. However, it is noted
that although hydrocarbons are relatively easy to handle as reductants in photocatalytic
deNOx, their performance still has much room for improvement. Many studies have
been focused on developing efficient photocatalysts. Among several metals and sup-
porting materials, titania-based photocatalysts had received the most attention; these
include TiO2, TiO2 nanosheets, Pd/TiO2, PdO/TiO2, Pt/TiO2, PtOxPdOy/TiO2, and
TiO2-coated a-Al2O3/g-Al2O3. There have been very few studies that work on non-
TiO2 based, such as vanadium silicalite-1 (VS-1, Si/V ¼ 120).

3. Designing of photoreactors for photocatalytic NOx
abatement

In addition to the photocatalyst, different photoreactor types would affect the photoca-
talytic efficiency, such as the phases involved (single phase, multiphase), the mode of
hydrodynamic operation (batch, semibatch, or continuous), the mixing and flow char-
acteristics, the shape geometric configuration, and the light source specifications [12].
There are several photocatalytic reactors that could be used for photo-deNOx.
However, to choose the right configurations, photoreactor types play an important
role and could affect the efficiency of photocatalysis process.

In most studies, the photodecomposition of NO is conducted under closed reaction
systems. For the first time, Zhang et al. compares the flow and closed reaction systems
[13]. It is found that photocatalysts are desirable for effective and efficient
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decomposition of NO into N2 and O2 under a flow reaction system, even for prolonged
irradiation periods. Further studies have focused on the flow reaction system. Lim et al.
propose a modified two-dimensional fluidized-bed photoreactor, which has efficient
contact between the photocatalyst and reactant gas with a good transmission of UV
light and, consequently, increases in NO decomposition efficiency compared with
the annular flow-type photoreactor [14]. For photo-SCR, Poulston et al. developed
the continuous small photoreactor [15]. Yu et al. coated photocatalyst on optical fibers
and used in a continuous flow optical fiber photoreactor [16]. This design could pro-
vide effectively light irradiation on the photocatalyst through the optical fiber, and as a
consequent, the efficiency of photoreaction could be enhanced. Yu et al. also proposed
a novel design that to insert optical fibers into every monolith channels, named a
photocatalyst-coated monolith photoreactor, in which the monolith channels could
be adequately illuminated, thus improving the efficiency of photoreaction [17].

Despite the low photoefficiency, the approach to develop a new and optimize the
current photocatalytic systems, including photocatalyst and photoreactor, is also essen-
tial and necessary for further studies.

4. Elucidating of reaction pathways for photocatalytic
NOx abatement

For broad applicability, it is necessary to understand the reaction pathways and the
mechanisms of the photoreaction. Hence, this section will focus on reviewing the re-
action pathways for the photocatalytic NOx abatement.

4.1 Reaction pathways of photooxidation

The reaction pathways of NO photooxidation over photocatalysts might undergo many
states (Scheme 14.1). For the typical photocatalytic reactions, the generation of
electionehole (e�, hþ) pairs, hydroxyl (•OH), and oxygen (O2

•�) radicals on the photo-
catalyst surface plays an important role. The reaction pathways of photooxidation of
NO to NO3

� via NO2 (intermediate) have been confirmed previously [18]. It is worthy

Scheme 14.1 The reaction pathways of NO photooxidation over photocatalysts.
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of note that the photooxidation efficiency of NO depends strongly on the presence of
water in the reaction [19], as a high concentration of relative humidity contributes to
the transformation of NO2 into HNO3.

4.2 Reaction pathways of photodecomposition

As mentioned previously, the generation of electionehole (e�, hþ) pairs on the photo-
catalyst surface plays a crucial role in this photoreaction. Scheme 14.2 represents the
possible reaction pathways occurring during the photocatalytic decomposition of NO
on the surface of TiO2 photocatalyst. Under light irradiation, the electron transfer oc-
curs from the electron trapped centers into the antibonding orbitals of adsorbed NO
molecules, resulting in their decomposition and formation of N(ads) and O(ads) surface
species [20]. Then, above species would migrate on the TiO2 surface and react with
other surface species (e.g., NO(ads), N(ads), O(ads) forming products such as N2O(gas),
NO2(ads), O2(gas) and N2(gas)). It is noted that the primary reaction is NO(ads) þ N(ads)
/ N2O(ads), which generates N2O as the major product [21]. On the other hand, the
mechanism of photodecomposition of NO(ads) to N(ads) þ O(ads) via NO

�
(ads) (interme-

diate) is also proposed [22].

4.3 Reaction pathways of photo-SCR

Besides the efforts to enhance the photocatalytic efficiency, much attention has been
paid to clarify the reaction pathways behind this reaction. In this section, the mecha-
nisms of photo-SCR are reviewed based on different types of reducing agent and pho-
tocatalyst. Firstly, the reaction pathways of the photo-SCR with NH3 over TiO2 are
proposed using spectroscopic [23], kinetic [24], and theoretical [25] methods, as
shown in Scheme 14.3 [26]. Theoretical and experimental studies consistently show
that NH3 is adsorbed firstly on a Lewis acid site of TiO2. Then the photoactivation
of NH3 adsorbed on TiO2 to generate $NH2 radical occurs through two pathways:
(1) the photoexcitation of TiO2 under UV light irradiation (<400 nm) and (2) the direct

Scheme 14.2 The reaction pathways of NO photodecomposition over photocatalysts.
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electron transfer from N2p of adsorbed NH3 to Ti3d that enabling the photo-SCR to
proceed under visible light (400e450 nm) irradiation. Following, the $NH2 radical re-
acts with NO to form nitrosoamide (NH2NO) intermediate species. Then the NH2NO
intermediate species is further decomposed to N2 and H2O. For the active site, the Ti

3þ

species of TiO2, which is reduced by H2, is reoxidized to the Ti4þ species.
In the previous study, the reaction pathways of the photo-SCR with NH3 over dye-

sensitized photocatalyst (Ru(2,20-bipyridyl-4,40-dicarboxylic acid)2(NCS)2 complex
(N3-dye)-modified TiO2) is successfully proposed [9]. Firstly, NO and NH3 are
adsorbed on the catalyst surface. Following, the electron injection from photoexcited
Ru dyes into the conduction band of TiO2. Then the activation of NH3 happened by
oxidized Ru dyes to generate the $NH2 radical. After that, the $NH2 radical would
react with NO2

� to form N2 and H2O. For the active site, the Ti3þ species of TiO2

is reoxidized to the Ti4þ species by O2.
Scheme 14.4 reveals the reaction pathways of the photo-SCR with NH3 over

perovskite-type photocatalyst (LaFe1�xMnxO3/ATP) [27]. Similar to the mechanism
over TiO2, NH3 is adsorbed on Lewis acid site of LaFe1�xMnxO3. Both of LaFe1-
xMnxO3 and LaMnO3 are excited under visible light where photogenerated electrons
on the conduction band of LaMnO3 directly transfer to the conduction band of
LaFe1�xMnxO3, which hinders the recombination of electronehole pairs. Subse-
quently, the photogenerated electrons coming from LaMnO3 and remained in the con-
duction band of LaFe1�xMnxO3 reduce Fe

3þ to Fe2þ. On the other side, the holes in
the valence band of LaMnO3 transfer to the valence band of LaFe1�xMnxO3, which

Scheme 14.3 The reaction pathways of the photo-SCR with NH3 under UV/visible light irra-
diation over TiO2.
Reprinted from S. Yamazoe et al./Applied Catalysis B: Environmental 83 (2008) 123e130.
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lead to forming more photogenerated holes which are captured by the $NH2 species
developed from NH3 adsorbed on the surface of LaFe1�xMnxO3 to produce $NH2

radical. Then $NH2 radical is attacked by NO and produces NH2NO intermediate spe-
cies. After that, the unstable intermediate NH2NO is decomposed into N2 and H2O
quickly. Finally, Fe2þ is reoxidized to Fe3þ by adsorbed O2.

For the photo-SCR with CO, the possible reactions occurring on the surface of TiO2
photocatalyst might be represented as follows [21]:

TiO2 þ hv / e� þ hþ (1)

NO(ads) þ e� / N(ads) þ O(ads) (2)

O(ads) þ CO(ads) / CO2(gas) (3)

2NO(ads) þ CO(ads) / N2O(ads) þ CO2(ads) (4)

N2O(ads) þ CO(ads) / N2(gas) þ CO2(ads) (5)

N(ads) þ N(ads) / N2(ads) (6)

N2(ads) / N2(gas) (7)

Fe2+
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H2N H
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Scheme 14.4 The reaction pathways of the photo-SCR with NH3 under visible light irradiation
over by LaFe1-xMnxO3/ATP photocatalyst.
Reprinted from Li et al. Chemical Engineering Journal, 320 (2017) 211e221.
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N2O(ads) / N2O(gas) (8)

CO2(ads) / CO2(gas) (9)

With the presence of CO, it would be beneficial for the efficiency of photo-SCR.
Under UV light irradiation, CO could help for the formation of N2O or act as a scav-
enger for N2O to produce N2 and CO2. On another approach, an in situ FTIR study
is conducted to reveal the reaction mechanism of photo-SCR with CO over three
single-site photocatalysts: Mo/SiO2, V/SiO2, and Cr/SiO2, as illustrated in Scheme
14.5 [28]. Among three single-site photocatalysts, Mo/SiO2 exhibits a high photo-
activity, leading to the production of both N2 and CO2. Contrarily, NO is only pho-
toreduced into N2O over V/SiO2. The reason might come from the fact that the
formation of unreactive NOeadsorbed V3þ oxide species is very stable and could
prohibit the reoxidation of V3þ oxide species by N2O. On the other hand, Cr/
SiO2 does not promote photo-SCR. The reoxidation to produce the original Cr6þ

species hardly occurs due to the stability of unreactive NOeadsorbed Cr2þ oxide
species.

For the photo-SCR with HC, their reaction pathways are still poorly understood.
Wu et al. use in situ FTIR spectroscopy to study the photoreaction process in the
presence of CH4 over TiO2-supported photocatalyst [29]. There is a variety of photo-
reaction intermediates that have been observed in the IR spectra. Before the light is
turned on, NO is adsorbed on the surface of the catalyst and converted into bidentate
nitrite and monodentate nitrate while CH4 is adsorbed to form

�
CH3

��. During UV
light irradiation, monodentate nitrites and

�
CH3

�� were oxidized to monodentate
and bidentate nitrates, formic acid, and methanol by superoxo species. Possible re-
action pathways of photo-SCR with CH4 are proposed based on the basis of the in-
termediates and products generated on the surface of the photocatalysts (Scheme
14.6) [29].

4.4 Reaction pathways for photo and thermal catalytic removal
of flue gas

Although numerous studies have been focused on photocatalytic removal of NO, there
is little information available on the mechanism for photoremoval of NO in the flue
gas. In the previous study, three types of co-feeds, including NO with O2þH2O,
NO with C4H10, and NO with C4H10 and O2þH2O to simulate the flue gas, are inves-
tigated at the different reaction temperature (40e300�C) [30]. Based on our knowl-
edge of the species obtaining during the photoreaction and the change in the
thermodynamic properties of reactions, possible reaction pathways of photo and ther-
mal catalytic removal of NO in flue gas over TiO2 is proposed systematically in
Scheme 14.7.

There might exist three types of photocatalytic reaction, including photooxidation,
photodecomposition, and photo-SCR, during the photocatalytic removal of NO in the
flue gas based on the reaction temperature. From a thermodynamic perspective, the
values for the changes of Gibbs free energies of the formation of products are
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Scheme 14.5 The reaction pathways of the photo-SCR with CO under UV light irradiation over
by (A) Mo/SiO2, (B) V/SiO2, and (C) Cr/SiO2 photocatalysts.
Reprinted from T. Toyao et al. Journal of Catalysis 299 (2013) 232e239.
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