

Catalytic Amination for N-Alkyl Amine Synthesis Feng Shi and Xinjiang Cui

Catalytic Amination for N-Alkyl Amine Synthesis

This page intentionally left blank

Catalytic Amination for N-Alkyl Amine Synthesis

Feng Shi Xinjiang Cui

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

© 2018 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-12-812284-6

For information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: John Fedor Acquisition Editor: Emily M. McCloskey Editorial Project Manager: Emily Thomson Production Project Manager: Prem Kumar Kaliamoorthi Cover Designer: Mark Rogers

Typeset by SPi Global, India

Contents

Preface			
1.	N-A	Alkyl Amine Synthesis by Catalytic Alcohol Amination	1
	1.1	Introduction	1
	1.2	Homogeneous Catalysts System	2
		1.2.1 Ru Catalyst System	3
		1.2.2 Ir Catalyst System	10
		1.2.3 Pd Catalyst System	18
		1.2.4 Rh/Os/Re/Pt Catalyst Systems	21
		1.2.5 Mo Catalyst System	23
		1.2.6 Co Catalyst System	23
		1.2.7 Cu Catalyst System	24
		1.2.8 Fe Catalyst System	25
		1.2.9 Ni Catalyst System	26
		1.2.10 Mn Catalyst System	27
		1.2.11 Transition Metal-Free Catalyst System	27
	1.3	Heterogeneous Catalyst System	29
		1.3.1 Cu Catalyst System	30
		1.3.2 Ni Catalyst System	33
		1.3.3 Fe/Mn/Co Catalyst Systems	36
		1.3.4 Ru Catalyst System	37
		1.3.5 Pd Catalyst System	39
		1.3.6 Pt Catalyst System	41
		1.3.7 Au Catalyst System	42
		1.3.8 Ag Catalyst System	43
		1.3.9 Transition Metal-Free Catalyst System	44
	1.4		46
	1.5	Conclusions and Outlook	49
		References	50
2.	N-A	Alkyl Amine Synthesis by Catalytic Coupling	
		Amines	59
	2.1	Introduction	59
	2.2	Homogeneous Catalyst System	59
		2.2.1 Ir Catalyst System	59
		2.2.2 Ru Catalyst System	61
		2.2.3 Pt Catalyst System	64
		2.2.4 Co Catalyst System	64

	2.3	Heterogeneous Catalyst System	65
		2.3.1 Pd Catalyst System	65
		2.3.2 Pt Catalyst System	68
		2.3.3 Ni Catalyst System	70
		2.3.4 Cu Catalyst System	71
		2.3.5 Other Catalysts	72
	2.4	Conclusions and Outlook	73
		References	73
3.	N-A	Alkyl Amine Synthesis by Hydroamination	
	of /	Alkene and Diene	75
	3.1	Introduction	
	3.2	Intermolecular Hydroamination of Alkenes	77
		3.2.1 Alkali and Alkaline Earth Metal-Based Catalysts	77
		3.2.2 Rare Earth Metal-Based Catalysts	78
		3.2.3 Late Transition Metal-Based Catalysts	78
		3.2.4 Acid Catalysts	84
		3.2.5 Other Catalysts	85
	3.3	Asymmetric Intermolecular Hydroamination of Alkenes	85
		3.3.1 Rare Earth Metal Catalysts	85
		3.3.2 Late Transition Metal-Based Catalysts	86
	3.4	Intramolecular Hydroamination of Aminoalkenes	89
		3.4.1 Alkali and Alkaline Earth Metal-Based Catalysts	89
		3.4.2 Rare Earth Metal-Based Catalysts	89
		3.4.3 Group 4/5 Metal-Based Catalysts	90
		3.4.4 Late Transition Metal-Based Catalysts	92
		3.4.5 Acid Catalysts	95
		3.4.6 Other Catalysts	96
	3.5	Asymmetric Intramolecular Hydroamination of Aminoalkenes	97
		3.5.1 Alkali Metal and Alkaline Earth Metal-Based Catalysts	97
		3.5.2 Rare Earth Metal-Based Catalysts	98
		3.5.3 Group 4/5 Metal-Based Catalysts	102
		3.5.4 Late Transition Metal-Based Catalysts	107
		3.5.5 Acid Catalyst Systems	108
	3.6	Conclusions and Outlook	108
		References	109
4.	N-A	Alkyl Amine Synthesis by Hydroaminomethylation	117
	4.1	Introduction	117
	4.2	Intermolecular Hydroaminomethylation	118
		4.2.1 Fe Catalyst System	118
		4.2.2 Rh Catalyst System	118
		4.2.3 Co Catalyst System	129
		4.2.4 Ru Catalyst System	129
		4.2.5 Ir Catalyst System	130

4.2.6 Au Catalyst System 131

	4.3	Intramolecular Hydroaminomethylation	131
	4.4		132
	4.5		134
	4.6		134
	7.0	References	135
		References	155
ŗ	5. N-I	Methyl Amine Synthesis by Reductive	
		ination of CO_2	139
	5.1	Introduction	139
	5.2		139
	5.2	5.2.1 Hydrogen as Reducing Agent	140
		5.2.2 Hydrosilanes as Reducing Agent	140
		5.2.3 Boranes as Reducing Agent Under Transition	142
		Metal-Free Catalyst System	145
	5.3		145
	5.5	References	
		References	146
(6 N-/	Alkyl Amine Synthesis by Oxidative Amination	
		Alkane	149
	6.1	Introduction	149
	6.2	Intermolecular Oxidative Amination of Alkanes	150
	0.2	6.2.1 Cu Catalyst System	150
		6.2.2 Fe Catalyst System	151
		6.2.3 Mn Catalyst System	151
		6.2.4 Ru Catalyst System	152
		6.2.5 Rh Catalyst System	155
		6.2.6 Pd Catalyst System	157
		6.2.7 Ag Catalyst System	157
			158
		6.2.8 Co Catalyst System	160
		6.2.9 Re Catalyst System	160
		6.2.10 Ni Catalyst System	
	()	6.2.11 Metal-Free System	160
	6.3	Intramolecular Oxidative Amination of Alkanes	162
		6.3.1 Cu Catalyst System	162
		6.3.2 Fe Catalyst System	163
		6.3.3 Mn Catalyst System	165
		6.3.4 Ru Catalyst System	165
		6.3.5 Rh Catalyst System	166
		6.3.6 Pd Catalyst System	170
		6.3.7 Ag Catalyst System	171
		6.3.8 Co Catalyst System	172
		6.3.9 Ni Catalyst System	172
		6.3.10 Bimetal Catalyst System	172
		6.3.11 Metal-Free Catalyst System	174
	6.4	Conclusions and Outlook	174
		References	175

7.	N-Alkyl Amine Synthesis With Nitroarene/Benzonitrile and Alcohol			31
	7.1	Introduction	18	31
	7.2	Synthesis of N-Alkyl Amines From Nitroare	enes and Alcohols 18	31
		7.2.1 Alcohol as Reducing Agent	18	31
		7.2.2 Glycerol as Reducing Agent	18	35
		7.2.3 Hydrogen as Reducing Agent	18	36
	7.3	Synthesis of N-Alkyl Amines From Benzoni	triles and Alcohols 18	37
		7.3.1 Alcohol as Reducing Agent	18	37
		7.3.2 Ritter Reaction	18	38
	7.4	Conclusions and Outlook	18	38
		References	18	39
Inde	ex		19	91

Preface

The chemistry of nitrogen-containing compounds is of significant importance in many crucial fields because they play key roles in the cases of preparation of agrochemicals, dyes, explosives, surfactants, additives, and so on. In addition, nitrogen derivatives are typical building blocks for life matter and bioactive compounds such as amino acids, nucleotides, vitamins, hormones, organic catalysts, and others. Among nitrogen-containing compounds, N-alkylamine is one of the most important compounds, and huge amount of attention has been given to this research area since the 1900s. Traditionally, N-alkylamines are synthesized using alkyl halides as alkylating reagents. However, this procedure is problematic due to amine over-alkylation, the toxic nature of alkyl halides, and the generation of inorganic salt waste. In order to achieve sustainable synthesis of *N*-alkylamines, there are several aspects of note. (1) The use of alkyl halides as alkylating reagents should be replaced by alcohol, amine, alkene, alkane, carbon dioxide, and other sustainable molecules; (2) the employment of amines as nitrogen sources can be replaced by nitrobenzene, nitrile, and ammonia to avoid multistep reactions; and (3) economic and efficient catalysts should be developed for the above transformations.

This handbook is intended to provide an overview of catalytic amination with amine, nitro-, and nitrile-containing molecules for *N*-alkylamine synthesis in the past 20–30 years or so, with emphasis placed not only on the amination reactions themselves, but also the development of the catalyst systems, i.e., from heterogeneous catalysis (1900–80) to homogeneous catalysis (1980–2010), and to the merging time of heterogeneous and homogeneous catalysis (2000–10). This handbook is organized in seven chapters to highlight the catalytic amination with different alkylating reagents, i.e., alcohol, amine, alkene/carbon monoxide/H₂, carbon dioxide, and alkane, and different nitrogen sources, i.e., amine, nitro-, and nitrile compounds. Although extensively valuable results were achieved in the last decades, the amination reactions with alkyl halides and aldehyde/ketone as alkylation reagents will not be included in this book as many positive reviews have been published in the last years.

It is a pleasure to be the editors of this handbook because it provides us with the opportunity to survey the field of catalytic amination for *N*-alkylamine synthesis and to honor the work of so many fine chemists. We gratefully acknowledge the Elsevier editorial staff, and extend special thanks to Katey Birtcher and Emily Thomson.